default search action
Shigeki Ohbayashi
2010 – 2019
- 2012
- [j8]Masanori Kurimoto, Jun Matsushima, Shigeki Ohbayashi, Yoshiaki Fukui, Michio Komoda, Nobuhiro Tsuda:
A Yield and Reliability Improvement Methodology Based on Logic Redundant Repair with a Repairable Scan Flip-Flop Designed by Push Rule. ACM Trans. Design Autom. Electr. Syst. 17(2): 17:1-17:22 (2012) - 2010
- [c4]Masanori Kurimoto, Jun Matsushima, Shigeki Ohbayashi, Yoshiaki Fukui:
A yield improvement methodology based on logic redundant repair with a repairable scan flip-flop designed by push rule. ISQED 2010: 184-190
2000 – 2009
- 2009
- [j7]Koji Nii, Yasumasa Tsukamoto, Makoto Yabuuchi, Yasuhiro Masuda, Susumu Imaoka, Keiichi Usui, Shigeki Ohbayashi, Hiroshi Makino, Hirofumi Shinohara:
Synchronous Ultra-High-Density 2RW Dual-Port 8T-SRAM With Circumvention of Simultaneous Common-Row-Access. IEEE J. Solid State Circuits 44(3): 977-986 (2009) - 2008
- [j6]Masako Fujii, Koji Nii, Hiroshi Makino, Shigeki Ohbayashi, Motoshige Igarashi, Takeshi Kawamura, Miho Yokota, Nobuhiro Tsuda, Tomoaki Yoshizawa, Toshikazu Tsutsui, Naohiko Takeshita, Naofumi Murata, Tomohiro Tanaka, Takanari Fujiwara, Kyoko Asahina, Masakazu Okada, Kazuo Tomita, Masahiko Takeuchi, Shigehisa Yamamoto, Hiromitsu Sugimoto, Hirofumi Shinohara:
A Large-Scale, Flip-Flop RAM Imitating a Logic LSI for Fast Development of Process Technology. IEICE Trans. Electron. 91-C(8): 1338-1347 (2008) - [j5]Shigeki Ohbayashi, Makoto Yabuuchi, Kazushi Kono, Yuji Oda, Susumu Imaoka, Keiichi Usui, Toshiaki Yonezu, Takeshi Iwamoto, Koji Nii, Yasumasa Tsukamoto, Masashi Arakawa, Takahiro Uchida, Masakazu Okada, Atsushi Ishii, Tsutomu Yoshihara, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
A 65 nm Embedded SRAM With Wafer Level Burn-In Mode, Leak-Bit Redundancy and Cu E-Trim Fuse for Known Good Die. IEEE J. Solid State Circuits 43(1): 96-108 (2008) - [j4]Koji Nii, Makoto Yabuuchi, Yasumasa Tsukamoto, Shigeki Ohbayashi, Susumu Imaoka, Hiroshi Makino, Yoshinobu Yamagami, Satoshi Ishikura, Toshio Terano, Toshiyuki Oashi, Keiji Hashimoto, Akio Sebe, Gen Okazaki, Katsuji Satomi, Hironori Akamatsu, Hirofumi Shinohara:
A 45-nm Bulk CMOS Embedded SRAM With Improved Immunity Against Process and Temperature Variations. IEEE J. Solid State Circuits 43(1): 180-191 (2008) - [j3]Satoshi Ishikura, Marefusa Kurumada, Toshio Terano, Yoshinobu Yamagami, Naoki Kotani, Katsuji Satomi, Koji Nii, Makoto Yabuuchi, Yasumasa Tsukamoto, Shigeki Ohbayashi, Toshiyuki Oashi, Hiroshi Makino, Hirofumi Shinohara, Hironori Akamatsu:
A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline Technique With Immunity From Simultaneous R/W Access Issues. IEEE J. Solid State Circuits 43(4): 938-945 (2008) - 2007
- [j2]Shigeki Ohbayashi, Makoto Yabuuchi, Koji Nii, Yasumasa Tsukamoto, Susumu Imaoka, Yuji Oda, Tsutomu Yoshihara, Motoshige Igarashi, Masahiko Takeuchi, Hiroshi Kawashima, Yasuo Yamaguchi, Kazuhiro Tsukamoto, Masahide Inuishi, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits. IEEE J. Solid State Circuits 42(4): 820-829 (2007) - [c3]Makoto Yabuuchi, Koji Nii, Yasumasa Tsukamoto, Shigeki Ohbayashi, Susumu Imaoka, Hiroshi Makino, Yoshinobu Yamagami, Satoshi Ishikura, Toshio Terano, Toshiyuki Oashi, Keiji Hashimoto, Akio Sebe, Gen Okazaki, Katsuji Satomi, Hironori Akamatsu, Hirofumi Shinohara:
A 45nm Low-Standby-Power Embedded SRAM with Improved Immunity Against Process and Temperature Variations. ISSCC 2007: 326-606 - [c2]Shigeki Ohbayashi, Makoto Yabuuchi, Kazushi Kono, Yuji Oda, Susumu Imaoka, Keiichi Usui, Toshiaki Yonezu, Takeshi Iwamoto, Koji Nii, Yasumasa Tsukamoto, Masashi Arakawa, Takahiro Uchida, Masakazu Okada, Atsushi Ishii, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
A 65nm Embedded SRAM with Wafer-Level Burn-In Mode, Leak-Bit Redundancy and E-Trim Fuse for Known Good Die. ISSCC 2007: 488-617 - 2005
- [c1]Yasumasa Tsukamoto, Koji Nii, Susumu Imaoka, Yuji Oda, Shigeki Ohbayashi, Tomoaki Yoshizawa, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
Worst-case analysis to obtain stable read/write DC margin of high density 6T-SRAM-array with local Vth variability. ICCAD 2005: 398-405
1990 – 1999
- 1999
- [j1]Hirotoshi Sato, Tomohisa Wada, Shigeki Ohbayashi, Kunihiko Kozaru, Yasuyuki Okamoto, Yoshiko Higashide, Tadayuki Shimizu, Yukio Maki, Rui Morimoto, Hisakazu Otoi, Tsuyoshi Koga, Hiroki Honda, Makoto Taniguchi, Yutaka Arita, Toru Shiomi:
A 500-MHz pipelined burst SRAM with improved SER immunity. IEEE J. Solid State Circuits 34(11): 1571-1579 (1999)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
[+][–] Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
[+][–] Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-25 05:43 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint