default search action
Ivan Markovsky
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j56]Mohammad Alsalti, Ivan Markovsky, Victor G. Lopez, Matthias A. Müller:
Data-Based System Representations From Irregularly Measured Data. IEEE Trans. Autom. Control. 70(1): 143-158 (2025) - 2024
- [j55]Ivan Markovsky, Hamid R. Ossareh:
Finite-data nonparametric frequency response evaluation without leakage. Autom. 159: 111351 (2024) - [j54]Ivan Markovsky, Mohammad Alsalti, Victor G. Lopez, Matthias Albrecht Müller:
Identification from data with periodically missing output samples. Autom. 169: 111869 (2024) - [j53]Jia Wang, Leander Hemelhof, Ivan Markovsky, Panagiotis Patrinos:
A Trust-Region Method for Data-Driven Iterative Learning Control of Nonlinear Systems. IEEE Control. Syst. Lett. 8: 1847-1852 (2024) - [c27]Ivan Markovsky:
The behavioral toolbox. L4DC 2024: 130-141 - [i11]Farzan Kaviani, Ivan Markovsky, Hamid R. Ossareh:
Uncertainty Quantification of Data-Driven Output Predictors in the Output Error Setting. CoRR abs/2404.15098 (2024) - [i10]András Sasfi, Alberto Padoan, Ivan Markovsky, Florian Dörfler:
Subspace tracking for online system identification. CoRR abs/2412.09052 (2024) - [i9]Chris Verhoek, Ivan Markovsky, Sofie Haesaert, Roland Tóth:
The behavioral approach for LPV data-driven representations. CoRR abs/2412.18543 (2024) - 2023
- [j52]Ivan Markovsky, Eduardo Prieto-Araujo, Florian Dörfler:
On the persistency of excitation. Autom. 147: 110657 (2023) - [j51]Antonio Fazzi, Ivan Markovsky:
Distance problems in the behavioral setting. Eur. J. Control 74: 100832 (2023) - [j50]Antonio Fazzi, Ivan Markovsky:
Addition and intersection of linear time-invariant behaviors. IFAC J. Syst. Control. 26: 100233 (2023) - [j49]Florian Dörfler, Jeremy Coulson, Ivan Markovsky:
Bridging Direct and Indirect Data-Driven Control Formulations via Regularizations and Relaxations. IEEE Trans. Autom. Control. 68(2): 883-897 (2023) - [j48]Ivan Markovsky:
Data-Driven Simulation of Generalized Bilinear Systems via Linear Time-Invariant Embedding. IEEE Trans. Autom. Control. 68(2): 1101-1106 (2023) - [j47]Ivan Markovsky, Florian Dörfler:
Identifiability in the Behavioral Setting. IEEE Trans. Autom. Control. 68(3): 1667-1677 (2023) - [c26]Prabhu Vijayan, Philippe Dreesen, Ivan Markovsky, Mariya Ishteva:
Parameter Estimation of Multiple Poles by Subspace-Based Method. CoDIT 2023: 1948-1953 - [c25]Leander Hemelhof, Ivan Markovsky, Panagiotis Patrinos:
Data-Driven Output Matching of Output-Generalized Bilinear and Linear Parameter-Varying systems. ECC 2023: 1-6 - [i8]Leander Hemelhof, Ivan Markovsky, Panagiotis Patrinos:
Data-Driven Output Matching of Output-Generalized Bilinear and Linear Parameter-Varying systems. CoRR abs/2302.12800 (2023) - [i7]Mohammad Alsalti, Ivan Markovsky, Victor G. Lopez, Matthias Albrecht Müller:
Data-based system representations from irregularly measured data. CoRR abs/2307.11589 (2023) - [i6]Jia Wang, Leander Hemelhof, Ivan Markovsky, Panagiotis Patrinos:
Fast data-driven iterative learning control for linear system with output disturbance. CoRR abs/2312.14326 (2023) - 2022
- [j46]Ivan Markovsky, Florian Dörfler:
Data-driven dynamic interpolation and approximation. Autom. 135: 110008 (2022) - 2021
- [j45]Ivan Markovsky, Florian Dörfler:
Behavioral systems theory in data-driven analysis, signal processing, and control. Annu. Rev. Control. 52: 42-64 (2021) - [j44]Vikas Kumar Mishra, Ivan Markovsky, Ben Grossmann:
Data-Driven Tests for Controllability. IEEE Control. Syst. Lett. 5(2): 517-522 (2021) - [j43]Antonio Fazzi, Nicola Guglielmi, Ivan Markovsky:
Generalized algorithms for the approximate matrix polynomial GCD of reducing data uncertainties with application to MIMO system and control. J. Comput. Appl. Math. 393: 113499 (2021) - [j42]Vikas Kumar Mishra, Ivan Markovsky:
The Set of Linear Time-Invariant Unfalsified Models With Bounded Complexity is Affine. IEEE Trans. Autom. Control. 66(9): 4432-4435 (2021) - [c24]Ivan Markovsky:
System theory without transfer functions and state-space? Yes, it's possible! CDC 2021: 1474-1477 - [c23]Vikas Kumar Mishra, Ivan Markovsky, Antonio Fazzi, Philippe Dreesen:
Data-Driven Simulation for NARX Systems. EUSIPCO 2021: 1055-1059 - 2020
- [j41]Gustavo Quintana-Carapia, Ivan Markovsky, Rik Pintelon, Péter Zoltán Csurcsia, Dieter Verbeke:
Bias and covariance of the least squares estimate in a structured errors-in-variables problem. Comput. Stat. Data Anal. 144: 106893 (2020) - [j40]Tianxiang Liu, Ivan Markovsky, Ting Kei Pong, Akiko Takeda:
A Hybrid Penalty Method for a Class of Optimization Problems with Multiple Rank Constraints. SIAM J. Matrix Anal. Appl. 41(3): 1260-1283 (2020) - [j39]Gustavo Quintana-Carapia, Ivan Markovsky, Rik Pintelon, Péter Zoltán Csurcsia, Dieter Verbeke:
Experimental Validation of a Data-Driven Step Input Estimation Method for Dynamic Measurements. IEEE Trans. Instrum. Meas. 69(7): 4843-4851 (2020) - [j38]Ivan Markovsky, Tianxiang Liu, Akiko Takeda:
Data-Driven Structured Noise Filtering via Common Dynamics Estimation. IEEE Trans. Signal Process. 68: 3064-3073 (2020) - [c22]Dieter Verbeke, Ivan Markovsky:
Line Spectral Estimation with Palindromic Kernels. ICASSP 2020: 5965-5968 - [i5]Antonio Fazzi, Nicola Guglielmi, Ivan Markovsky:
A gradient system approach for Hankel structured low-rank approximation. CoRR abs/2002.06621 (2020)
2010 – 2019
- 2019
- [j37]Ivan Markovsky:
On the behavior of autonomous Wiener systems. Autom. 110 (2019) - [j36]Antonio Fazzi, Nicola Guglielmi, Ivan Markovsky:
An ODE-based method for computing the approximate greatest common divisor of polynomials. Numer. Algorithms 81(2): 719-740 (2019) - [c21]Ivan Markovsky, Tianxiang Liu, Akiko Takeda:
Subspace methods for multi-channel sum-of-exponentials common dynamics estimation. CDC 2019: 2672-2675 - [c20]Konstantin Usevich, Ivan Markovsky:
Software package for mosaic-Hankel structured low-rank approximation. CDC 2019: 7165-7170 - [c19]Antonio Fazzi, Nicola Guglielmi, Ivan Markovsky:
Computing common factors of matrix polynomials with applications in system and control theory. CDC 2019: 7721-7726 - [c18]Philippe Dreesen, Ivan Markovsky:
Data-driven Simulation Using the Nuclear Norm Heuristic. ICASSP 2019: 8207-8211 - [i4]Antonio Fazzi, Nicola Guglielmi, Ivan Markovsky:
Computing Approximate Common Factors of Matrix Polynomials. CoRR abs/1907.13101 (2019) - 2018
- [c17]Ivan Markovsky, Antonio Fazzi, Nicola Guglielmi:
Applications of Polynomial Common Factor Computation in Signal Processing. LVA/ICA 2018: 99-106 - [c16]Ivan Markovsky, Pier Luigi Dragotti:
Using Hankel Structured Low-Rank Approximation for Sparse Signal Recovery. LVA/ICA 2018: 479-487 - 2017
- [j35]Ivan Markovsky, Guillaume Mercère:
Subspace identification with constraints on the impulse response. Int. J. Control 90(8): 1728-1735 (2017) - [j34]Nicola Guglielmi, Ivan Markovsky:
An ODE-Based Method for Computing the Distance of Coprime Polynomials to Common Divisibility. SIAM J. Numer. Anal. 55(3): 1456-1482 (2017) - [j33]Ivan Markovsky:
A Missing Data Approach to Data-Driven Filtering and Control. IEEE Trans. Autom. Control. 62(4): 1972-1978 (2017) - [j32]Konstantin Usevich, Ivan Markovsky:
Variable projection methods for approximate (greatest) common divisor computations. Theor. Comput. Sci. 681: 176-198 (2017) - [c15]Ivan Markovsky:
Application of low-rank approximation for nonlinear system identification. MED 2017: 12-16 - 2016
- [j31]Ivan Markovsky:
The most powerful unfalsified model for data with missing values. Syst. Control. Lett. 95: 53-61 (2016) - [c14]Guillaume Mercère, Ivan Markovsky, José A. Ramos:
Innovation-based subspace identification in open- and closed-loop. CDC 2016: 2951-2956 - 2015
- [j30]Ivan Markovsky:
Comparison of Adaptive and Model-Free Methods for Dynamic Measurement. IEEE Signal Process. Lett. 22(8): 1094-1097 (2015) - [j29]Ivan Markovsky, Rik Pintelon:
Identification of Linear Time-Invariant Systems From Multiple Experiments. IEEE Trans. Signal Process. 63(13): 3549-3554 (2015) - [c13]Ivan Markovsky:
System Identification in the Behavioral Setting - A Structured Low-Rank Approximation Approach. LVA/ICA 2015: 235-242 - 2014
- [j28]Ivan Markovsky, Jan Goos, Konstantin Usevich, Rik Pintelon:
Realization and identification of autonomous linear periodically time-varying systems. Autom. 50(6): 1632-1640 (2014) - [j27]Konstantin Usevich, Ivan Markovsky:
Optimization on a Grassmann manifold with application to system identification. Autom. 50(6): 1656-1662 (2014) - [j26]Ivan Markovsky, Konstantin Usevich:
Software for weighted structured low-rank approximation. J. Comput. Appl. Math. 256: 278-292 (2014) - [j25]Konstantin Usevich, Ivan Markovsky:
Variable projection for affinely structured low-rank approximation in weighted 2-norms. J. Comput. Appl. Math. 272: 430-448 (2014) - [j24]Mariya Ishteva, Konstantin Usevich, Ivan Markovsky:
Factorization Approach to Structured Low-Rank Approximation with Applications. SIAM J. Matrix Anal. Appl. 35(3): 1180-1204 (2014) - [j23]Ivan Markovsky:
Recent progress on variable projection methods for structured low-rank approximation. Signal Process. 96: 406-419 (2014) - [j22]Stephan Rhode, Konstantin Usevich, Ivan Markovsky, Frank Gauterin:
A Recursive Restricted Total Least-Squares Algorithm. IEEE Trans. Signal Process. 62(21): 5652-5662 (2014) - [p1]Ivan Markovsky, Konstantin Usevich:
Nonlinearly Structured Low-Rank Approximation. Low-Rank and Sparse Modeling for Visual Analysis 2014: 1-22 - [i3]Konstantin Usevich, Ivan Markovsky:
Adjusted least squares fitting of algebraic hypersurfaces. CoRR abs/1412.2291 (2014) - 2013
- [j21]Ivan Markovsky, Konstantin Usevich:
Structured Low-Rank Approximation with Missing Data. SIAM J. Matrix Anal. Appl. 34(2): 814-830 (2013) - [c12]Ivan Markovsky:
Exact system identification with missing data. CDC 2013: 151-155 - [c11]Ivan Markovsky:
Approximate system identification with missing data. CDC 2013: 156-161 - [i2]Konstantin Usevich, Ivan Markovsky:
Variable projection methods for approximate (greatest) common divisor computations. CoRR abs/1304.6962 (2013) - [i1]Mariya Ishteva, Konstantin Usevich, Ivan Markovsky:
Regularized structured low-rank approximation with applications. CoRR abs/1308.1827 (2013) - 2012
- [b1]Ivan Markovsky:
Low Rank Approximation - Algorithms, Implementation, Applications. Communications and Control Engineering, Springer 2012, ISBN 978-1-4471-2226-5, pp. I-X, 1-256 - [j20]Konstantin Usevich, Ivan Markovsky:
Variable projection methods for approximate GCD computations. ACM Commun. Comput. Algebra 46(3/4): 122-124 (2012) - 2011
- [j19]Ivan Markovsky:
On the Complex Least Squares Problem with Constrained Phase. SIAM J. Matrix Anal. Appl. 32(3): 987-992 (2011) - [c10]Fengmin Le, Ivan Markovsky, Christopher T. Freeman, Eric Rogers:
Online identification of electrically stimulated muscle models. ACC 2011: 90-95 - 2010
- [j18]Ivan Markovsky, Mahesan Niranjan:
Approximate low-rank factorization with structured factors. Comput. Stat. Data Anal. 54(12): 3411-3420 (2010) - [j17]Ivan Markovsky:
Closed-loop data-driven simulation. Int. J. Control 83(10): 2134-2139 (2010)
2000 – 2009
- 2009
- [j16]Ivan Markovsky, Sasan Mahmoodi:
Least-Squares Contour Alignment. IEEE Signal Process. Lett. 16(1): 41-44 (2009) - [c9]Marek Przedwojski, Ivan Markovsky, Eric Rogers:
Identification of clock synchronization errors: A behavioral approach. CDC 2009: 8095-8100 - [c8]Fengmin Le, Ivan Markovsky, Christopher T. Freeman, Eric Rogers:
Identification of electrically stimulated muscle after stroke. ECC 2009: 1576-1581 - 2008
- [j15]Ivan Markovsky:
Structured low-rank approximation and its applications. Autom. 44(4): 891-909 (2008) - [j14]Ivan Markovsky, Paolo Rapisarda:
Data-driven simulation and control. Int. J. Control 81(12): 1946-1959 (2008) - 2007
- [j13]Alexander Kukush, Ivan Markovsky, Sabine Van Huffel:
Estimation in a linear multivariate measurement error model with a change point in the data. Comput. Stat. Data Anal. 52(2): 1167-1182 (2007) - [j12]Sabine Van Huffel, Ivan Markovsky, Richard J. Vaccaro, Torsten Söderström:
Total least squares and errors-in-variables modeling. Signal Process. 87(10): 2281-2282 (2007) - [j11]Ivan Markovsky, Sabine Van Huffel:
Overview of total least-squares methods. Signal Process. 87(10): 2283-2302 (2007) - 2006
- [j10]Ivan Markovsky, Maria Luisa Rastello, Amedeo Premoli, Alexander Kukush, Sabine Van Huffel:
The element-wise weighted total least-squares problem. Comput. Stat. Data Anal. 50(1): 181-209 (2006) - [c7]Ivan Markovsky, Jan C. Willems, Bart De Moor:
The Module Structure of ARMAX Systems. CDC 2006: 811-816 - 2005
- [j9]Ivan Markovsky, Bart De Moor:
Linear dynamic filtering with noisy input and output. Autom. 41(1): 167-171 (2005) - [j8]Ivan Markovsky, Jan C. Willems, Paolo Rapisarda, Bart De Moor:
Algorithms for deterministic balanced subspace identification. Autom. 41(5): 755-766 (2005) - [j7]Jan C. Willems, Paolo Rapisarda, Ivan Markovsky, Bart De Moor:
A note on persistency of excitation. Syst. Control. Lett. 54(4): 325-329 (2005) - [j6]Ivan Markovsky, Sabine Van Huffel, Rik Pintelon:
Block-Toeplitz/Hankel Structured Total Least Squares. SIAM J. Matrix Anal. Appl. 26(4): 1083-1099 (2005) - [j5]Ivan Markovsky, Jan C. Willems, Sabine Van Huffel, Bart De Moor, Rik Pintelon:
Application of structured total least squares for system identification and model reduction. IEEE Trans. Autom. Control. 50(10): 1490-1500 (2005) - [c6]Ivan Markovsky, Jan C. Willems, Bart De Moor:
State Representations From Finite Time Series. CDC/ECC 2005: 832-835 - [c5]Ivan Markovsky, Jan C. Willems, Sabine Van Huffel, Bart De Moor:
Software for Approximate Linear System Identification. CDC/ECC 2005: 1559-1564 - [c4]Ivan Markovsky, Sabine Van Huffel:
On Weighted Structured Total Least Squares. LSSC 2005: 695-702 - 2004
- [j4]Alexander Kukush, Ivan Markovsky, Sabine Van Huffel:
Consistent estimation in an implicit quadratic measurement error model. Comput. Stat. Data Anal. 47(1): 123-147 (2004) - [j3]Ivan Markovsky, Sabine Van Huffel, Alexander Kukush:
On the computation of the multivariate structured total least squares estimator. Numer. Linear Algebra Appl. 11(5-6): 591-608 (2004) - [j2]Ivan Markovsky, Alexander Kukush, Sabine Van Huffel:
Consistent least squares fitting of ellipsoids. Numerische Mathematik 98(1): 177-194 (2004) - [c3]Jan C. Willems, Ivan Markovsky, Paolo Rapisarda, Bart De Moor:
A note on persistency of excitation. CDC 2004: 2630-2631 - [c2]Ivan Markovsky, Jan C. Willems, Sabine Van Huffel, Bart De Moor, Rik Pintelon:
Application of structured total least squares for system identification. CDC 2004: 3382-3387 - 2002
- [j1]Alexander Kukush, Ivan Markovsky, Sabine Van Huffel:
Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis. Comput. Stat. Data Anal. 41(1): 3-18 (2002) - [c1]Ivan Markovsky, Jan C. Willems, Bart De Moor:
Continuous-time errors-in-variables filtering. CDC 2002: 2576-2581
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-26 23:48 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint