default search action
Mohamed Medhat Gaber
Person information
- affiliation: Birmingham City University, UK
- affiliation: Galala University, Egypt
- affiliation (former): Robert Gordon University
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j82]Suhaib Chughtai, Zakaria Senousy, Ahmed Mahany, Nouh Sabri Elmitwally, Khalid N. Ismail, Mohamed Medhat Gaber, Mohammed M. Abdelsamea:
DeepCon: Unleashing the Power of Divide and Conquer Deep Learning for Colorectal Cancer Classification. IEEE Open J. Comput. Soc. 5: 380-388 (2024) - [i14]Hansi Hettiarachchi, Amna Dridi, Mohamed Medhat Gaber, Pouyan Parsafard, Nicoleta Bocaneala, Katja Breitenfelder, Gonçal Costa Jutglar, Maria M. Hedblom, Mihaela Juganaru-Mathieu, Thamer Mecharnia, Sumee Park, He Tan, Abdel-Rahman H. Tawil, Edlira Vakaj:
CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards Automatic Compliance Checking. CoRR abs/2403.02231 (2024) - 2023
- [j81]Besher Alhalabi, Shadi Basurra, Mohamed Medhat Gaber:
FedNets: Federated Learning on Edge Devices Using Ensembles of Pruned Deep Neural Networks. IEEE Access 11: 30726-30738 (2023) - [j80]Lorraine Chambers, Mohamed Medhat Gaber, Hossein Ghomeshi:
AdaDeepStream: streaming adaptation to concept evolution in deep neural networks. Appl. Intell. 53(22): 27323-27343 (2023) - [j79]Zakaria Senousy, Mohamed Medhat Gaber, Mohammed M. Abdelsamea:
AUQantO: Actionable Uncertainty Quantification Optimization in deep learning architectures for medical image classification. Appl. Soft Comput. 146: 110666 (2023) - [j78]Patryk Buczek, Usama Zidan, Mohamed Medhat Gaber, Mohammed M. Abdelsamea:
Idecomp: imbalance-aware decomposition for class-decomposed classification using conditional GANs. Discov. Artif. Intell. 3(1) (2023) - [j77]Usama Zidan, Mohamed Medhat Gaber, Mohammed M. Abdelsamea:
SwinCup: Cascaded swin transformer for histopathological structures segmentation in colorectal cancer. Expert Syst. Appl. 216: 119452 (2023) - [j76]Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev Bhogal, Mohamed Medhat Gaber:
WhatsUp: An event resolution approach for co-occurring events in social media. Inf. Sci. 625: 553-577 (2023) - [j75]Hani Ragab Hassen, Yassin Zain Alabdeen, Mohamed Medhat Gaber, Megha Sharma:
D2TS: a dual diversity tree selection approach to pruning of random forests. Int. J. Mach. Learn. Cybern. 14(2): 467-481 (2023) - [j74]Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev Bhogal, Mohamed Medhat Gaber:
TTL: transformer-based two-phase transfer learning for cross-lingual news event detection. Int. J. Mach. Learn. Cybern. 14(8): 2739-2760 (2023) - [j73]Usama Zidan, Hamdy A. El Desouky, Mohamed Medhat Gaber, Mohammed M. Abdelsamea:
From Pixels to Deposits: Porphyry Mineralization With Multispectral Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 16: 9474-9486 (2023) - [c79]John Hayes, Adel Aneiba, Mohamed Medhat Gaber, Md Shantanu Islam, Raouf Abozariba:
FBA-SDN: A Federated Byzantine Approach for Blockchain-Based Collaborative Intrusion Detection in Edge SDN. ICC Workshops 2023: 427-433 - [c78]John Hayes, Adel Aneiba, Mohamed Medhat Gaber:
SymbIoT: Towards An Extensible Blockchain Integration Testbed for IIoT. IIoT-NETs@SIGCOMM 2023: 8-14 - [c77]Edlira Vakaj, Maxime Lefrançois, Amna Dridi, Thomas Beach, Mohamed Medhat Gaber, Gonçal Costa Jutglar, He Tan:
Semantisation of rules for automated compliance checking. LDAC 2023: 245-246 - 2022
- [j72]Luke White, Shadi Basurra, Mohamed Medhat Gaber, AbdulRahman A. Al-Sewari, Faisal Saeed, Sudhamshu Mohan Addanki:
Agent-Based Simulations Using Genetic Algorithm Calibration: A Children's Services Application. IEEE Access 10: 88386-88397 (2022) - [j71]Amna Dridi, Mohamed Medhat Gaber, Raja Muhammad Atif Azad, Jagdev Bhogal:
Vec2Dynamics: A Temporal Word Embedding Approach to Exploring the Dynamics of Scientific Keywords - Machine Learning as a Case Study. Big Data Cogn. Comput. 6(1): 21 (2022) - [j70]Hansi Hettiarachchi, Doaa Al-Turkey, Mariam Adedoyin-Olowe, Jagdev Bhogal, Mohamed Medhat Gaber:
TED-S: Twitter Event Data in Sports and Politics with Aggregated Sentiments. Data 7(7): 90 (2022) - [j69]Khadijah Muzzammil Hanga, Yevgeniya Kovalchuk, Mohamed Medhat Gaber:
PGraphD*: Methods for Drift Detection and Localisation Using Deep Learning Modelling of Business Processes. Entropy 24(7): 910 (2022) - [j68]Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev Bhogal, Mohamed Medhat Gaber:
Embed2Detect: temporally clustered embedded words for event detection in social media. Mach. Learn. 111(1): 49-87 (2022) - [j67]Lorraine Chambers, Mohamed Medhat Gaber:
DeepStreamOS: Fast open-Set classification for convolutional neural networks. Pattern Recognit. Lett. 154: 75-82 (2022) - [j66]Asmaa Abbas, Mohamed Medhat Gaber, Mohammed M. Abdelsamea:
XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification. Sensors 22(24): 9875 (2022) - [j65]Zakaria Senousy, Mohammed M. Abdelsamea, Mohamed Medhat Gaber, Moloud Abdar, U. Rajendra Acharya, Abbas Khosravi, Saeid Nahavandi:
MCUa: Multi-Level Context and Uncertainty Aware Dynamic Deep Ensemble for Breast Cancer Histology Image Classification. IEEE Trans. Biomed. Eng. 69(2): 818-829 (2022) - [j64]Mohammed M. Abdelsamea, Usama Zidan, Zakaria Senousy, Mohamed Medhat Gaber, Emad Rakha, Mohammad Ilyas:
A survey on artificial intelligence in histopathology image analysis. WIREs Data Mining Knowl. Discov. 12(6) (2022) - 2021
- [j63]Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Medhat Gaber:
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell. 51(2): 854-864 (2021) - [j62]Besher Alhalabi, Mohamed Medhat Gaber, Shadi Basura:
MicroNets: A multi-phase pruning pipeline to deep ensemble learning in IoT devices. Comput. Electr. Eng. 96(Part): 107581 (2021) - [j61]Zakaria Senousy, Mohammed M. Abdelsamea, Mona Mostafa Mohamed, Mohamed Medhat Gaber:
3E-Net: Entropy-Based Elastic Ensemble of Deep Convolutional Neural Networks for Grading of Invasive Breast Carcinoma Histopathological Microscopic Images. Entropy 23(5): 620 (2021) - [j60]Frederic T. Stahl, Thien Le, Atta Badii, Mohamed Medhat Gaber:
A Frequent Pattern Conjunction Heuristic for Rule Generation in Data Streams. Inf. 12(1): 24 (2021) - [j59]Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Medhat Gaber:
4S-DT: Self-Supervised Super Sample Decomposition for Transfer Learning With Application to COVID-19 Detection. IEEE Trans. Neural Networks Learn. Syst. 32(7): 2798-2808 (2021) - [j58]Amna Dridi, Mohamed Medhat Gaber, R. Muhammad Atif Azad, Jagdev Bhogal:
Scholarly data mining: A systematic review of its applications. WIREs Data Mining Knowl. Discov. 11(2) (2021) - [c76]Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev Bhogal, Mohamed Medhat Gaber:
Embed2Detect: Temporally Clustered Embedded Words for Event Detection in Social Media: Extended Abstract. DSAA 2021: 1-2 - [c75]Nicole P. Mugova, Mohammed M. Abdelsamea, Mohamed Medhat Gaber:
On The Effect Of Decomposition Granularity On DeTraC For COVID-19 Detection Using Chest X-Ray Images. ECMS 2021: 29-34 - [c74]Saif Alzubi, Frederic T. Stahl, Mohamed Medhat Gaber:
Towards Intrusion Detection Of Previously Unknown Network Attacks. ECMS 2021: 35-41 - [i13]Zakaria Senousy, Mohammed M. Abdelsamea, Mohamed Medhat Gaber, Moloud Abdar, U. Rajendra Acharya, Abbas Khosravi, Saeid Nahavandi:
MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble for Breast Cancer Histology Image Classification. CoRR abs/2108.10709 (2021) - 2020
- [j57]Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Medhat Gaber:
DeTrac: Transfer Learning of Class Decomposed Medical Images in Convolutional Neural Networks. IEEE Access 8: 74901-74913 (2020) - [j56]Khadijah M. Hanga, Yevgeniya Kovalchuk, Mohamed Medhat Gaber:
A Graph-Based Approach to Interpreting Recurrent Neural Networks in Process Mining. IEEE Access 8: 172923-172938 (2020) - [j55]Julian Hatwell, Mohamed Medhat Gaber, R. Muhammad Atif Azad:
CHIRPS: Explaining random forest classification. Artif. Intell. Rev. 53(8): 5747-5788 (2020) - [j54]Khaled Fawagreh, Mohamed Medhat Gaber:
eGAP: An Evolutionary Game Theoretic Approach to Random Forest Pruning. Big Data Cogn. Comput. 4(4): 37 (2020) - [j53]Khaled Fawagreh, Mohamed Medhat Gaber:
Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach. Computing 102(5): 1187-1198 (2020) - [j52]Hossein Ghomeshi, Mohamed Medhat Gaber, Yevgeniya Kovalchuk:
A non-canonical hybrid metaheuristic approach to adaptive data stream classification. Future Gener. Comput. Syst. 102: 127-139 (2020) - [j51]Julian Hatwell, Mohamed Medhat Gaber, R. Muhammad Atif Azad:
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences. BMC Medical Informatics Decis. Mak. 20(1): 250 (2020) - [j50]Zahraa S. Abdallah, Mohamed Medhat Gaber:
Co-eye: a multi-resolution ensemble classifier for symbolically approximated time series. Mach. Learn. 109(11): 2029-2061 (2020) - [i12]Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Medhat Gaber:
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. CoRR abs/2003.13815 (2020) - [i11]Lorraine Chambers, Mohamed Medhat Gaber, Zahraa S. Abdallah:
DeepStreamCE: A Streaming Approach to Concept Evolution Detection in Deep Neural Networks. CoRR abs/2004.04116 (2020) - [i10]Besher Alhalabi, Mohamed Medhat Gaber, Shadi Basurra:
Prune2Edge: A Multi-Phase Pruning Pipelines to Deep Ensemble Learning in IIoT. CoRR abs/2004.04710 (2020) - [i9]Zahraa S. Abdallah, Mohamed Medhat Gaber:
Co-eye: A Multi-resolution Symbolic Representation to TimeSeries Diversified Ensemble Classification. CoRR abs/2004.06668 (2020) - [i8]Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev Bhogal, Mohamed Medhat Gaber:
Embed2Detect: Temporally Clustered Embedded Words for Event Detection in Social Media. CoRR abs/2006.05908 (2020) - [i7]Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Medhat Gaber:
4S-DT: Self Supervised Super Sample Decomposition for Transfer learning with application to COVID-19 detection. CoRR abs/2007.11450 (2020)
2010 – 2019
- 2019
- [j49]Fatima Abdallah, Shadi Basurra, Mohamed Medhat Gaber:
A Non-Intrusive Heuristic for Energy Messaging Intervention Modeled Using a Novel Agent-Based Approach. IEEE Access 7: 1627-1646 (2019) - [j48]Hossein Ghomeshi, Mohamed Medhat Gaber, Yevgeniya Kovalchuk:
RED-GENE: An Evolutionary Game Theoretic Approach to Adaptive Data Stream Classification. IEEE Access 7: 173944-173954 (2019) - [j47]Amna Dridi, Mohamed Medhat Gaber, R. Muhammad Atif Azad, Jagdev Bhogal:
Leap2Trend: A Temporal Word Embedding Approach for Instant Detection of Emerging Scientific Trends. IEEE Access 7: 176414-176428 (2019) - [j46]Hossein Ghomeshi, Mohamed Medhat Gaber, Yevgeniya Kovalchuk:
EACD: evolutionary adaptation to concept drifts in data streams. Data Min. Knowl. Discov. 33(3): 663-694 (2019) - [j45]Alfredo Cuzzocrea, Mohamed Medhat Gaber, Edoardo Fadda, Giorgio Mario Grasso:
An innovative framework for supporting big atmospheric data analytics via clustering-based spatio-temporal analysis. J. Ambient Intell. Humaniz. Comput. 10(9): 3383-3398 (2019) - [j44]Mohamed Medhat Gaber, Adel Aneiba, Shadi Basurra, Oliver Batty, Ahmed M. Elmisery, Yevgeniya Kovalchuk, Muhammad Habib Ur Rehman:
Internet of Things and data mining: From applications to techniques and systems. WIREs Data Mining Knowl. Discov. 9(3) (2019) - [c73]Mona Nabil Demaidi, Mohamed Medhat Gaber:
TONE: A Method for Terminological Ontology Evaluation. ArabWIC 2019: 14:1-14:10 - [c72]Amna Dridi, Mohamed Medhat Gaber, R. Muhammad Atif Azad, Jagdev Bhogal:
DeepHist: Towards a Deep Learning-based Computational History of Trends in the NIPS. IJCNN 2019: 1-8 - [c71]Besher Alhalabi, Mohamed Medhat Gaber, Shadi Basurra:
EnSyth: A Pruning Approach to Synthesis of Deep Learning Ensembles. SMC 2019: 3466-3473 - [i6]Besher Alhalabi, Mohamed Medhat Gaber, Shadi Basurra:
EnSyth: A Pruning Approach to Synthesis of Deep Learning Ensembles. CoRR abs/1907.09286 (2019) - [i5]Safwan Shatnawi, Mohamed Medhat Gaber, Mihaela Cocea:
A Heuristically Modified FP-Tree for Ontology Learning with Applications in Education. CoRR abs/1910.13561 (2019) - 2018
- [j43]Mona Nabil Demaidi, Mohamed Medhat Gaber, Nick Filer:
OntoPeFeGe: Ontology-Based Personalized Feedback Generator. IEEE Access 6: 31644-31664 (2018) - [j42]Mahmut Yazici, Shadi Basurra, Mohamed Medhat Gaber:
Edge Machine Learning: Enabling Smart Internet of Things Applications. Big Data Cogn. Comput. 2(3): 26 (2018) - [j41]Zahraa Said Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, Shonali Krishnaswamy:
Activity Recognition with Evolving Data Streams: A Review. ACM Comput. Surv. 51(4): 71:1-71:36 (2018) - [j40]Ahmed Hussein, Eyad Elyan, Mohamed Medhat Gaber, Chrisina Jayne:
Deep imitation learning for 3D navigation tasks. Neural Comput. Appl. 29(7): 389-404 (2018) - [c70]Amna Dridi, Mohamed Medhat Gaber, R. Muhammad Atif Azad, Jagdev Bhogal:
k-NN Embedding Stability for word2vec Hyper-Parametrisation in Scientific Text. DS 2018: 328-343 - [c69]Fatima Abdallah, Shadi Basurra, Mohamed Medhat Gaber:
Cascading Probability Distributions in Agent-Based Models: An Application to Behavioural Energy Wastage. ICAISC (2) 2018: 489-503 - [c68]Fatima Abdallah, Shadi Basurra, Mohamed Medhat Gaber:
An Agent-Based Collective Model to Simulate Peer Pressure Effect on Energy Consumption. ICCCI (1) 2018: 283-296 - [c67]Diana Haidar, Mohamed Medhat Gaber:
Adaptive One-Class Ensemble-based Anomaly Detection: An Application to Insider Threats. IJCNN 2018: 1-9 - [i4]Diana Haidar, Mohamed Medhat Gaber, Yevgeniya Kovalchuk:
AnyThreat: An Opportunistic Knowledge Discovery Approach to Insider Threat Detection. CoRR abs/1812.00257 (2018) - 2017
- [j39]Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, Chrisina Jayne:
Imitation Learning: A Survey of Learning Methods. ACM Comput. Surv. 50(2): 21:1-21:35 (2017) - [j38]Thien Le, Frederic T. Stahl, Mohamed Medhat Gaber, João Bártolo Gomes, Giuseppe Di Fatta:
On expressiveness and uncertainty awareness in rule-based classification for data streams. Neurocomputing 265: 127-141 (2017) - [j37]Eyad Elyan, Mohamed Medhat Gaber:
A genetic algorithm approach to optimising random forests applied to class engineered data. Inf. Sci. 384: 220-234 (2017) - [j36]Muhammad Habib Ur Rehman, Prem Prakash Jayaraman, Saif Ur Rehman Malik, Atta ur Rehman Khan, Mohamed Medhat Gaber:
RedEdge: A Novel Architecture for Big Data Processing in Mobile Edge Computing Environments. J. Sens. Actuator Networks 6(3): 17 (2017) - [j35]Mona Nabil Demaidi, Mohamed Medhat Gaber, Nick Filer:
Evaluating the quality of the ontology-based auto-generated questions. Smart Learn. Environ. 4(1): 7 (2017) - [j34]Mohammed M. Abdelsamea, Giorgio Gnecco, Mohamed Medhat Gaber:
A SOM-based Chan-Vese model for unsupervised image segmentation. Soft Comput. 21(8): 2047-2067 (2017) - [c66]Fatima Abdallah, Shadi Basurra, Mohamed Medhat Gaber:
A Hybrid Agent-Based and Probabilistic Model for Fine-Grained Behavioural Energy Waste Simulation. ICTAI 2017: 991-995 - [c65]Ahmed Hussein, Eyad Elyan, Mohamed Medhat Gaber, Chrisina Jayne:
Deep reward shaping from demonstrations. IJCNN 2017: 510-517 - 2016
- [j33]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Carlos J. Martín-Dancausa, Frederic T. Stahl, João Bártolo Gomes:
A rule dynamics approach to event detection in Twitter with its application to sports and politics. Expert Syst. Appl. 55: 351-360 (2016) - [j32]Zahraa Said Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, Shonali Krishnaswamy:
AnyNovel: detection of novel concepts in evolving data streams. Evol. Syst. 7(2): 73-93 (2016) - [j31]Eyad Elyan, Mohamed Medhat Gaber:
A fine-grained Random Forests using class decomposition: an application to medical diagnosis. Neural Comput. Appl. 27(8): 2279-2288 (2016) - [c64]Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan:
Deep Active Learning for Autonomous Navigation. EANN 2016: 3-17 - [c63]Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan:
An Outlier Ranking Tree Selection Approach to Extreme Pruning of Random Forests. EANN 2016: 267-282 - [c62]Thien Le, Frederic T. Stahl, Chris Wrench, Mohamed Medhat Gaber:
A Statistical Learning Method to Fast Generalised Rule Induction Directly from Raw Measurements. ICMLA 2016: 935-938 - [c61]Alfredo Cuzzocrea, Mohamed Medhat Gaber, Staci Lattimer, Giorgio Mario Grasso:
Clustering-Based Spatio-Temporal Analysis of Big Atmospheric Data. ICC 2016 2016: 74:1-74:8 - 2015
- [j30]Mohammed M. Abdelsamea, Giorgio Gnecco, Mohamed Medhat Gaber, Eyad Elyan:
On the Relationship between Variational Level Set-Based and SOM-Based Active Contours. Comput. Intell. Neurosci. 2015: 109029:1-109029:19 (2015) - [j29]Mohammed M. Abdelsamea, Giorgio Gnecco, Mohamed Medhat Gaber:
An efficient Self-Organizing Active Contour model for image segmentation. Neurocomputing 149: 820-835 (2015) - [j28]Zahraa Said Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, Shonali Krishnaswamy:
Adaptive mobile activity recognition system with evolving data streams. Neurocomputing 150: 304-317 (2015) - [j27]Frederic T. Stahl, David May, Hugo Mills, Max Bramer, Mohamed Medhat Gaber:
A Scalable Expressive Ensemble Learning Using Random Prism: A MapReduce Approach. Trans. Large Scale Data Knowl. Centered Syst. 20: 90-107 (2015) - [c60]Alfredo Cuzzocrea, Mohamed Medhat Gaber, Staci Lattimer:
Spatio-temporal analysis of Greenhouse Gas data via clustering techniques. CSCWD 2015: 478-483 - [c59]Alfredo Cuzzocrea, Mohamed Medhat Gaber, Ary Mazharuddin Shiddiqi:
Distributed Classification of Data Streams: An Adaptive Technique. DaWaK 2015: 296-309 - [c58]Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan:
A Replicator Dynamics Approach to Collective Feature Engineering in Random Forests. SGAI Conf. 2015: 25-41 - [c57]Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan:
CLUB-DRF: A Clustering Approach to Extreme Pruning of Random Forests. SGAI Conf. 2015: 59-73 - [e8]Mohamed Medhat Gaber, Mihaela Cocea, Nirmalie Wiratunga, Ayse Göker:
Advances in Social Media Analysis. Studies in Computational Intelligence 602, Springer 2015, ISBN 978-3-319-18457-9 [contents] - [i3]Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan:
On Extreme Pruning of Random Forest Ensembles for Real-time Predictive Applications. CoRR abs/1503.04996 (2015) - [i2]Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan:
An Outlier Detection-based Tree Selection Approach to Extreme Pruning of Random Forests. CoRR abs/1503.05187 (2015) - 2014
- [j26]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic T. Stahl:
A Survey of Data Mining Techniques for Social Media Analysis. J. Data Min. Digit. Humanit. 2014 (2014) - [j25]Dang-Hoan Tran, Mohamed Medhat Gaber, Kai-Uwe Sattler:
Change detection in streaming data in the era of big data: models and issues. SIGKDD Explor. 16(1): 30-38 (2014) - [j24]João Bártolo Gomes, Mohamed Medhat Gaber, Pedro A. C. Sousa, Ernestina Menasalvas Ruiz:
Mining Recurring Concepts in a Dynamic Feature Space. IEEE Trans. Neural Networks Learn. Syst. 25(1): 95-110 (2014) - [j23]Mohamed Medhat Gaber, João Gama, Shonali Krishnaswamy, João Bártolo Gomes, Frederic T. Stahl:
Data stream mining in ubiquitous environments: state-of-the-art and current directions. WIREs Data Mining Knowl. Discov. 4(2): 116-138 (2014) - [c56]Joarder Mohammad Mustafa Kamal, M. Manzur Murshed, Mohamed Medhat Gaber:
Progressive Data Stream Mining and Transaction Classification for Workload-Aware Incremental Database Repartitioning. BDC 2014: 8-15 - [c55]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Carlos J. Martín-Dancausa, Frederic T. Stahl:
Extraction of Unexpected Rules from Twitter Hashtags and its Application to Sport Events. ICMLA 2014: 207-212 - [c54]Safwan Shatnawi, Mohamed Medhat Gaber, Mihaela Cocea:
Automatic Content Related Feedback for MOOCs Based on Course Domain Ontology. IDEAL 2014: 27-35 - [c53]Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan:
Diversified Random Forests Using Random Subspaces. IDEAL 2014: 85-92 - [c52]Alfredo Cuzzocrea, Mohamed Medhat Gaber, Ary Mazharuddin Shiddiqi:
Adaptive data stream mining for wireless sensor networks. IDEAS 2014: 284-287 - [c51]Thien Le, Frederic T. Stahl, João Bártolo Gomes, Mohamed Medhat Gaber, Giuseppe Di Fatta:
Computationally Efficient Rule-Based Classification for Continuous Streaming Data. SGAI Conf. 2014: 21-34 - [c50]Joarder Mohammad Mustafa Kamal, M. Manzur Murshed, Mohamed Medhat Gaber:
Predicting Hot-Spots in Distributed Cloud Databases Using Association Rule Mining. UCC 2014: 800-805 - [c49]Mohammed M. Abdelsamea, Giorgio Gnecco, Mohamed Medhat Gaber:
A Concurrent SOM-Based Chan-Vese Model for Image Segmentation. WSOM 2014: 199-208 - [c48]Mohammed M. Abdelsamea, Giorgio Gnecco, Mohamed Medhat Gaber:
A Survey of SOM-Based Active Contour Models for Image Segmentation. WSOM 2014: 293-302 - [e7]Sherif Sakr, Mohamed Medhat Gaber:
Large Scale and Big Data - Processing and Management. Auerbach Publications 2014, ISBN 978-1-4665-8150-0 [contents] - 2013
- [j22]Mohamed Medhat Gaber, Harinder Singh Atwal:
An entropy-based approach to enhancing Random Forests. Intell. Decis. Technol. 7(4): 319-327 (2013) - [j21]João Bártolo Gomes, Mohamed Medhat Gaber, Pedro A. C. Sousa, Ernestina Menasalvas Ruiz:
Collaborative Data Stream Mining in Ubiquitous Environments using Dynamic Classifier Selection. Int. J. Inf. Technol. Decis. Mak. 12(6): 1287-1308 (2013) - [j20]Mohamed Medhat Gaber, Shonali Krishnaswamy, Brett Gillick, Hasnain AlTaiar, Nicholas Nicoloudis, Jonathan Liono, Arkady B. Zaslavsky:
Interactive self-adaptive clutter-aware visualisation for mobile data mining. J. Comput. Syst. Sci. 79(3): 369-382 (2013) - [j19]Pari Delir Haghighi, Shonali Krishnaswamy, Arkady B. Zaslavsky, Mohamed Medhat Gaber, Abhijat Sinha, Brett Gillick:
Open Mobile Miner: A Toolkit for Building Situation-Aware Data Mining Applications. J. Organ. Comput. Electron. Commer. 23(3): 224-248 (2013) - [j18]Frederic T. Stahl, Bogdan Gabrys, Mohamed Medhat Gaber, Monika Berendsen:
An overview of interactive visual data mining techniques for knowledge discovery. WIREs Data Mining Knowl. Discov. 3(4): 239-256 (2013) - [c47]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic T. Stahl:
TRCM: A Methodology for Temporal Analysis of Evolving Concepts in Twitter. ICAISC (2) 2013: 135-145 - [c46]Kieran Jay Edwards, Mohamed Medhat Gaber:
Identifying Uncertain Galaxy Morphologies Using Unsupervised Learning. ICAISC (2) 2013: 146-157 - [c45]João Bártolo Gomes, Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic T. Stahl:
Rule Type Identification Using TRCM for Trend Analysis in Twitter. SGAI Conf. 2013: 273-278 - [c44]Alfredo Cuzzocrea, Shane Leo Francis, Mohamed Medhat Gaber:
An Information-Theoretic Approach for Setting the Optimal Number of Decision Trees in Random Forests. SMC 2013: 1013-1019 - [e6]Mohamed Medhat Gaber, Nirmalie Wiratunga, Ayse Göker, Mihaela Cocea:
Proceedings of the BCS SGAI Workshop on Social Media Analysis 2013 co-located with 33rd Annual International Conference of the British Computer Society's Specialist Group on Artificial Intelligence (BCS SGAI 2013), Cambridge, UK, December 10, 2013. CEUR Workshop Proceedings 1110, CEUR-WS.org 2013 [contents] - [i1]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic T. Stahl:
A Survey of Data Mining Techniques for Social Media Analysis. CoRR abs/1312.4617 (2013) - 2012
- [j17]Indre Zliobaite, Albert Bifet, Mohamed Medhat Gaber, Bogdan Gabrys, João Gama, Leandro L. Minku, Katarzyna Musial:
Next challenges for adaptive learning systems. SIGKDD Explor. 14(1): 48-55 (2012) - [j16]Frederic T. Stahl, Mohamed Medhat Gaber, Paul Aldridge, David May, Han Liu, Max Bramer, Philip S. Yu:
Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining. Trans. Large Scale Data Knowl. Centered Syst. 5: 183-205 (2012) - [j15]Mohamed Medhat Gaber:
Advances in data stream mining. WIREs Data Mining Knowl. Discov. 2(1): 79-85 (2012) - [c43]Zahraa Said Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, Shonali Krishnaswamy:
CBARS: Cluster Based Classification for Activity Recognition Systems. AMLTA 2012: 82-91 - [c42]João Bártolo Gomes, Shonali Krishnaswamy, Mohamed Medhat Gaber, Pedro A. C. Sousa, Ernestina Menasalvas Ruiz:
Mobile Activity Recognition Using Ubiquitous Data Stream Mining. DaWaK 2012: 130-141 - [c41]Mohamed Bahy Bader-El-Den, Mohamed Medhat Gaber:
GARF: Towards Self-optimised Random Forests. ICONIP (2) 2012: 506-515 - [c40]Zahraa Said Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, Shonali Krishnaswamy:
StreamAR: Incremental and Active Learning with Evolving Sensory Data for Activity Recognition. ICTAI 2012: 1163-1170 - [c39]Ranjani Nagarajan, Alfredo Cuzzocrea, Mohamed Medhat Gaber:
Deploying Mobile Software Agents for Distributed Data Mining on Wireless Sensor Networks: A Comparative Analysis. ICTAI 2012: 1179-1185 - [c38]Alfredo Cuzzocrea, Mohamed Medhat Gaber:
Data Science and Distributed Intelligence: Recent Developments and Future Insights. IDC 2012: 139-147 - [c37]Mohamed Medhat Gaber, Mohamed Bahy Bader-El-Den:
Optimisation of Ensemble Classifiers using Genetic Algorithm. KES 2012: 39-48 - [c36]Daniel Vaccaro-Senna, Mohamed Medhat Gaber:
Incorporating Farthest Neighbours in Instance Space Classification. KES 2012: 345-355 - [c35]Lorraine Chambers, Erik Tromp, Mykola Pechenizkiy, Mohamed Medhat Gaber:
Mobile Sentiment Analysis. KES 2012: 470-479 - [c34]João Bártolo Gomes, Shonali Krishnaswamy, Mohamed Medhat Gaber, Pedro A. C. Sousa, Ernestina Menasalvas Ruiz:
MARS: A Personalised Mobile Activity Recognition System. MDM 2012: 316-319 - [c33]Shonali Krishnaswamy, João Gama, Mohamed Medhat Gaber:
Mobile Data Stream Mining: From Algorithms to Applications. MDM 2012: 360-363 - [c32]Frederic T. Stahl, Mohamed Medhat Gaber, Manuel Martin Salvador:
eRules: A Modular Adaptive Classification Rule Learning Algorithm for Data Streams. SGAI Conf. 2012: 65-78 - [c31]Marwan Hassani, Pascal Spaus, Mohamed Medhat Gaber, Thomas Seidl:
Density-Based Projected Clustering of Data Streams. SUM 2012: 311-324 - [p7]Mohamed Medhat Gaber:
Introduction. Journeys to Data Mining 2012: 1-11 - [e5]Mohamed Medhat Gaber:
Journeys to Data Mining. Springer 2012, ISBN 978-3-642-28046-7 [contents] - [e4]Mohamed Medhat Gaber, Mihaela Cocea, Stephan Weibelzahl, Ernestina Menasalvas, Cyril Labbé:
Proceedings of the 1st International Workshop on Sentiment Discovery from Affective Data, SDAD@ECML/PKDD 2012, Bristol, UK, September 28, 2012. CEUR Workshop Proceedings 917, CEUR-WS.org 2012 [contents] - 2011
- [j14]Suan Khai Chong, Mohamed Medhat Gaber, Shonali Krishnaswamy, Seng Wai Loke:
Energy conservation in wireless sensor networks: a rule-based approach. Knowl. Inf. Syst. 28(3): 579-614 (2011) - [j13]Suan Khai Chong, Mohamed Medhat Gaber, Shonali Krishnaswamy, Seng Wai Loke:
Energy-Aware Data Processing Techniques for Wireless Sensor Networks: A Review. Trans. Large Scale Data Knowl. Centered Syst. 3: 117-137 (2011) - [c30]Zahraa Said Abdallah, Mohamed Medhat Gaber:
KB-CB-N classification: Towards unsupervised approach for supervised learning. CIDM 2011: 283-290 - [c29]Shonali Krishnaswamy, João Gama, Mohamed Medhat Gaber:
Advances in data stream mining for mobile and ubiquitous environments. CIKM 2011: 2607-2608 - [c28]João Bártolo Gomes, Mohamed Medhat Gaber, Pedro A. C. Sousa, Ernestina Menasalvas Ruiz:
Context-Aware Collaborative Data Stream Mining in Ubiquitous Devices. IDA 2011: 22-33 - [c27]Frederic T. Stahl, Mohamed Medhat Gaber, Max Bramer, Philip S. Yu:
Distributed hoeffding trees for pocket data mining. HPCS 2011: 686-692 - [c26]Frederic T. Stahl, Mohamed Medhat Gaber, Han Liu, Max Bramer, Philip S. Yu:
Distributed Classification for Pocket Data Mining. ISMIS 2011: 336-345 - [c25]Hossein Tayebi, Shonali Krishnaswamy, Agustinus Borgy Waluyo, Abhijat Sinha, Mohamed Medhat Gaber:
RA-SAX: Resource-Aware Symbolic Aggregate Approximation for Mobile ECG Analysis. Mobile Data Management (1) 2011: 289-290 - [c24]Abhijat Sinha, Hossein Tayebi, Shonali Krishnaswamy, Agustinus Borgy Waluyo, Mohamed Medhat Gaber:
Resource-aware ECG analysis on mobile devices. SAC 2011: 1012-1013 - [p6]Luke Albert Steller, Shonali Krishnaswamy, Mohamed Medhat Gaber:
Enabling Scalable Semantic Reasoning for Mobile Services. Semantic Services, Interoperability and Web Applications 2011: 178-204 - 2010
- [j12]Varun Chandola, Olufemi A. Omitaomu, Auroop R. Ganguly, Ranga Raju Vatsavai, Nitesh V. Chawla, João Gama, Mohamed Medhat Gaber:
Knowledge discovery from sensor data (SensorKDD). SIGKDD Explor. 12(2): 50-53 (2010) - [c23]Raymes Khoury, Tim Dawborn, Bulat Gafurov, Glen Pink, Edmund Tse, Quincy Tse, Khaled Almiani, Mohamed Medhat Gaber, Uwe Röhm, Bernhard Scholz:
Corona: Energy-Efficient Multi-query Processing in Wireless Sensor Networks. DASFAA (2) 2010: 416-419 - [c22]Brett Gillick, Hasnain AlTaiar, Shonali Krishnaswamy, Jonathan Liono, Nicholas Nicoloudis, Abhijat Sinha, Arkady B. Zaslavsky, Mohamed Medhat Gaber:
Clutter-Adaptive Visualization for Mobile Data Mining. ICDM Workshops 2010: 1381-1384 - [c21]Mohamed Medhat Gaber, Shonali Krishnaswamy, Brett Gillick, Nicholas Nicoloudis, Jonathan Liono, Hasnain AlTaiar, Arkady B. Zaslavsky:
Adaptive Clutter-Aware Visualization for Mobile Data Stream Mining. ICTAI (2) 2010: 304-311 - [c20]Frederic T. Stahl, Mohamed Medhat Gaber, Max Bramer, Philip S. Yu:
Pocket Data Mining: Towards Collaborative Data Mining in Mobile Computing Environments. ICTAI (2) 2010: 323-330 - [c19]Mohamed Medhat Gaber, Ary Mazharuddin Shiddiqi:
Distributed data stream classification for wireless sensor networks. SAC 2010: 1629-1630 - [p5]Mohamed Medhat Gaber:
Introduction. Scientific Data Mining and Knowledge Discovery 2010: 1-4 - [p4]Mohamed Medhat Gaber, Arkady B. Zaslavsky, Shonali Krishnaswamy:
Data Stream Mining. Data Mining and Knowledge Discovery Handbook 2010: 759-787 - [p3]Pari Delir Haghighi, Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady B. Zaslavsky:
Situation-Aware Adaptive Processing (SAAP) of Data Streams. Pervasive Computing, Innovations in Intelligent Multimedia and Applications 2010: 313-338 - [e3]Mohamed Medhat Gaber:
Scientific Data Mining and Knowledge Discovery - Principles and Foundations. Springer 2010, ISBN 978-3-642-02787-1 [contents] - [e2]Mohamed Medhat Gaber, Ranga Raju Vatsavai, Olufemi A. Omitaomu, João Gama, Nitesh V. Chawla, Auroop R. Ganguly:
Knowledge Discovery from Sensor Data, Second International Workshop, Sensor-KDD 2008, Las Vegas, NV, USA, August 24-27, 2008, Revised Selected Papers. Lecture Notes in Computer Science 5840, Springer 2010, ISBN 978-3-642-12518-8 [contents]
2000 – 2009
- 2009
- [j11]João Gama, Auroop R. Ganguly, Olufemi A. Omitaomu, Ranga Raju Vatsavai, Mohamed Medhat Gaber:
Knowledge discovery from data streams. Intell. Data Anal. 13(3): 403-404 (2009) - [j10]Pari Delir Haghighi, Arkady B. Zaslavsky, Shonali Krishnaswamy, Mohamed Medhat Gaber, Seng Wai Loke:
Context-aware adaptive data stream mining. Intell. Data Anal. 13(3): 423-434 (2009) - [j9]Luke Steller, Shonali Krishnaswamy, Mohamed Medhat Gaber:
Enabling Scalable Semantic Reasoning for Mobile Services. Int. J. Semantic Web Inf. Syst. 5(2): 91-116 (2009) - [j8]Mohamed Medhat Gaber, Uwe Röhm, Karel Herink:
An analytical study of central and in-network data processing for wireless sensor networks. Inf. Process. Lett. 110(2): 62-70 (2009) - [j7]Olufemi A. Omitaomu, Ranga Raju Vatsavai, Auroop R. Ganguly, Nitesh V. Chawla, João Gama, Mohamed Medhat Gaber:
Knowledge discovery from sensor data (SensorKDD). SIGKDD Explor. 11(2): 84-87 (2009) - [c18]Pari Delir Haghighi, Arkady B. Zaslavsky, Shonali Krishnaswamy, Mohamed Medhat Gaber:
Mobile Data Mining for Intelligent Healthcare Support. HICSS 2009: 1-10 - [c17]Luke Albert Steller, Shonali Krishnaswamy, Mohamed Medhat Gaber:
Cost efficient, adaptive reasoning strategies for pervasive service discovery. ICPS 2009: 11-20 - [c16]Luke Albert Steller, Shonali Krishnaswamy, Mohamed Medhat Gaber:
A Weighted Approach to Partial Matching for Mobile Reasoning. ISWC 2009: 618-633 - [p2]Mohamed Medhat Gaber:
Data Stream Mining Using Granularity-Based Approach. Foundations of Computational Intelligence (6) 2009: 47-66 - [e1]Olufemi A. Omitaomu, Auroop R. Ganguly, João Gama, Ranga Raju Vatsavai, Nitesh V. Chawla, Mohamed Medhat Gaber:
Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data, Paris, France, June 28, 2009. ACM 2009, ISBN 978-1-60558-668-7 [contents] - 2008
- [j6]Ranga Raju Vatsavai, Olufemi A. Omitaomu, João Gama, Nitesh V. Chawla, Mohamed Medhat Gaber, Auroop R. Ganguly:
Knowledge discovery from sensor data (SensorKDD). SIGKDD Explor. 10(2): 68-73 (2008) - [c15]Uwe Röhm, Mohamed Medhat Gaber, Quincy Tse:
Enabling Resource-Awareness for In-Network Data Processing in Wireless Sensor Networks. ADC 2008: 95-102 - [c14]Pari Delir Haghighi, Shonali Krishnaswamy, Arkady B. Zaslavsky, Mohamed Medhat Gaber:
Reasoning about Context in Uncertain Pervasive Computing Environments. EuroSSC 2008: 112-125 - [c13]Jie Yin, Mohamed Medhat Gaber:
Clustering Distributed Time Series in Sensor Networks. ICDM 2008: 678-687 - [c12]Suan Khai Chong, Mohamed Medhat Gaber, Seng Wai Loke, Shonali Krishnaswamy:
ARTS: Adaptive Rule Triggers on Sensors for Energy Conservation in Applications using Coarse-Granularity Data. ICESS 2008: 314-321 - [c11]Pari Delir Haghighi, Brett Gillick, Shonali Krishnaswamy, Mohamed Medhat Gaber, Arkady B. Zaslavsky:
Situation-Aware Adaptive Visualization for Sensory Data Stream Mining. KDD Workshop on Knowledge Discovery from Sensor Data 2008: 43-58 - [c10]Suan Khai Chong, Shonali Krishnaswamy, Seng Wai Loke, Mohamed Medhat Gaber:
Using association rules for energy conservation in wireless sensor networks. SAC 2008: 971-975 - 2007
- [j5]Osnat Horovitz, Shonali Krishnaswamy, Mohamed Medhat Gaber:
A fuzzy approach for interpretation of ubiquitous data stream clustering and its application in road safety. Intell. Data Anal. 11(1): 89-108 (2007) - [c9]Nhan Duc Phung, Mohamed Medhat Gaber, Uwe Röhm:
Resource-aware Online Data Mining in Wireless Sensor Networks. CIDM 2007: 139-146 - [c8]Bernhard Scholz, Mohamed Medhat Gaber, Tim Dawborn, Raymes Khoury, Edmund Tse:
Efficient Time Triggered Query Processing in Wireless Sensor Networks. ICESS 2007: 391-402 - [c7]Uwe Röhm, Bernhard Scholz, Mohamed Medhat Gaber:
On the Integration of Data Stream Clustering into a Query Processor for Wireless Sensor Networks. MDM 2007: 331-335 - [p1]Mohamed Medhat Gaber, Arkady B. Zaslavsky, Shonali Krishnaswamy:
A Survey of Classification Methods in Data Streams. Data Streams - Models and Algorithms 2007: 39-59 - 2006
- [j4]Mohamed Medhat Gaber, Philip S. Yu:
Detection and Classification of Changes in Evolving Data Streams. Int. J. Inf. Technol. Decis. Mak. 5(4): 659-670 (2006) - [j3]Mohamed Medhat Gaber, Philip S. Yu:
A Holistic Approach for Resource-aware Adaptive Data Stream Mining. New Gener. Comput. 25(1): 95-115 (2006) - [c6]Brett Gillick, Shonali Krishnaswamy, Mohamed Medhat Gaber, Arkady B. Zaslavsky:
Visualisation of Fuzzy Classification of Data Elements in Ubiquitous Data Stream Mining. IWUC 2006: 29-38 - [c5]Mohamed Medhat Gaber, Philip S. Yu:
A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering. SAC 2006: 649-656 - 2005
- [j2]Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady B. Zaslavsky:
Resource-aware Mining of Data Streams. J. Univers. Comput. Sci. 11(8): 1440-1453 (2005) - [j1]Mohamed Medhat Gaber, Arkady B. Zaslavsky, Shonali Krishnaswamy:
Mining data streams: a review. SIGMOD Rec. 34(2): 18-26 (2005) - [c4]Osnat Horovitz, Mohamed Medhat Gaber, Shonali Krishnaswamy:
Making Sense of Ubiquitous Data Streams - A Fuzzy Logic Approach. KES (2) 2005: 922-928 - 2004
- [c3]Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady B. Zaslavsky:
Cost-Efficient Mining Techniques for Data Streams. ACSW 2004: 109-114 - [c2]Mohamed Medhat Gaber, Arkady B. Zaslavsky, Shonali Krishnaswamy:
Towards an Adaptive Approach for Mining Data Streams in Resource Constrained Environments. DaWaK 2004: 189-198 - [c1]Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady B. Zaslavsky:
A Wireless Data Stream Mining Model. Wireless Information Systems 2004: 152-160
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:23 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint