default search action
18th AISTATS 2015: San Diego, California, USA
- Guy Lebanon, S. V. N. Vishwanathan:
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015. JMLR Workshop and Conference Proceedings 38, JMLR.org 2015
Preface
- Guy Lebanon, S. V. N. Vishwanathan:
Preface.
Accepted Papers
- Ayan Acharya, Joydeep Ghosh, Mingyuan Zhou:
Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices. - Sreangsu Acharyya, Joydeep Ghosh:
Parameter Estimation of Generalized Linear Models without Assuming their Link Function. - David G. Anderson, Simon Du, Michael W. Mahoney, Christopher Melgaard, Kunming Wu, Ming Gu:
Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nyström Method. - Onur Atan, Cem Tekin, Mihaela van der Schaar:
Global Multi-armed Bandits with Hölder Continuity. - Martin Azizyan, Aarti Singh, Larry A. Wasserman:
Efficient Sparse Clustering of High-Dimensional Non-spherical Gaussian Mixtures. - Stephen H. Bach, Bert Huang, Lise Getoor:
Unifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees. - Gábor Balázs, András György, Csaba Szepesvári:
Near-optimal max-affine estimators for convex regression. - Aviad Barzilai, Koby Crammer:
Convex Multi-Task Learning by Clustering. - Aditya Bhaskara, Ananda Theertha Suresh, Morteza Zadimoghaddam:
Sparse Solutions to Nonnegative Linear Systems and Applications. - Avradeep Bhowmik, Joydeep Ghosh, Oluwasanmi Koyejo:
Generalized Linear Models for Aggregated Data. - Yuri Burda, Roger B. Grosse, Ruslan Salakhutdinov:
Accurate and conservative estimates of MRF log-likelihood using reverse annealing. - David E. Carlson, Volkan Cevher, Lawrence Carin:
Stochastic Spectral Descent for Restricted Boltzmann Machines. - Alexandra Carpentier:
Implementable confidence sets in high dimensional regression. - Sougata Chaudhuri, Ambuj Tewari:
Online Ranking with Top-1 Feedback. - Sheng Chen, Arindam Banerjee:
One-bit Compressed Sensing with the k-Support Norm. - Tianqi Chen, Sameer Singh, Ben Taskar, Carlos Guestrin:
Efficient Second-Order Gradient Boosting for Conditional Random Fields. - Wenlin Chen, Yixin Chen, Kilian Q. Weinberger:
Filtered Search for Submodular Maximization with Controllable Approximation Bounds. - Xiangli Chen, Brian D. Ziebart:
Predictive Inverse Optimal Control for Linear-Quadratic-Gaussian Systems. - Yetian Chen, Lingjian Meng, Jin Tian:
Exact Bayesian Learning of Ancestor Relations in Bayesian Networks. - Dehua Cheng, Xinran He, Yan Liu:
Model Selection for Topic Models via Spectral Decomposition. - Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, Yann LeCun:
The Loss Surfaces of Multilayer Networks. - Alexandre Défossez, Francis R. Bach:
Averaged Least-Mean-Squares: Bias-Variance Trade-offs and Optimal Sampling Distributions. - Weicong Ding, Prakash Ishwar, Venkatesh Saligrama:
A Topic Modeling Approach to Ranking. - Marwa El Halabi, Volkan Cevher:
A totally unimodular view of structured sparsity. - Mehrdad Farajtabar, Manuel Gomez-Rodriguez, Mohammad Zamani, Nan Du, Hongyuan Zha, Le Song:
Back to the Past: Source Identification in Diffusion Networks from Partially Observed Cascades. - Ethan Fetaya, Ohad Shamir, Shimon Ullman:
Graph Approximation and Clustering on a Budget. - Robert Finn, Brian Kulis:
A Sufficient Statistics Construction of Exponential Family Levy Measure Densities for Nonparametric Conjugate Models. - Søren Frejstrup Maibing, Christian Igel:
Computational Complexity of Linear Large Margin Classification With Ramp Loss. - Zhe Gan, Ricardo Henao, David E. Carlson, Lawrence Carin:
Learning Deep Sigmoid Belief Networks with Data Augmentation. - Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Efficient Estimation of Mutual Information for Strongly Dependent Variables. - Nicolas Goix, Anne Sabourin, Stéphan Clémençon:
On Anomaly Ranking and Excess-Mass Curves. - José P. González-Brenes:
Modeling Skill Acquisition Over Time with Sequence and Topic Modeling. - Suriya Gunasekar, Makoto Yamada, Dawei Yin, Yi Chang:
Consistent Collective Matrix Completion under Joint Low Rank Structure. - Fangjian Guo, Charles Blundell, Hanna M. Wallach, Katherine A. Heller:
The Bayesian Echo Chamber: Modeling Social Influence via Linguistic Accommodation. - Jihun Hamm:
Preserving Privacy of Continuous High-dimensional Data with Minimax Filters. - Satoshi Hara, Tetsuro Morimura, Toshihiro Takahashi, Hiroki Yanagisawa, Taiji Suzuki:
A Consistent Method for Graph Based Anomaly Localization. - Tatsunori B. Hashimoto, Yi Sun, Tommi S. Jaakkola:
Metric recovery from directed unweighted graphs. - James Hensman, Alexander G. de G. Matthews, Zoubin Ghahramani:
Scalable Variational Gaussian Process Classification. - Matthew D. Hoffman, David M. Blei:
Stochastic Structured Variational Inference. - Michael C. Hughes, Dae Il Kim, Erik B. Sudderth:
Reliable and Scalable Variational Inference for the Hierarchical Dirichlet Process. - Tomoharu Iwata, Koh Takeuchi:
Cross-domain recommendation without shared users or items by sharing latent vector distributions. - Rishabh K. Iyer, Jeff A. Bilmes:
Submodular Point Processes with Applications to Machine learning. - Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, Karthik Sridharan:
Online Optimization : Competing with Dynamic Comparators. - Ariel Jaffe, Boaz Nadler, Yuval Kluger:
Estimating the accuracies of multiple classifiers without labeled data. - Kevin G. Jamieson, Sumeet Katariya, Atul Deshpande, Robert D. Nowak:
Sparse Dueling Bandits. - Varun Jampani, S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, John M. Winn:
Consensus Message Passing for Layered Graphical Models. - Shuichi Katsumata, Akiko Takeda:
Robust Cost Sensitive Support Vector Machine. - Yoshinobu Kawahara, Rishabh K. Iyer, Jeff A. Bilmes:
On Approximate Non-submodular Minimization via Tree-Structured Supermodularity. - Rajiv Khanna, Joydeep Ghosh, Russell A. Poldrack, Oluwasanmi Koyejo:
Sparse Submodular Probabilistic PCA. - Arto Klami, Abhishek Tripathi, Johannes Sirola, Lauri Väre, Frédéric Roulland:
Latent feature regression for multivariate count data. - Matthäus Kleindessner, Ulrike von Luxburg:
Dimensionality estimation without distances. - Aryeh Kontorovich, Roi Weiss:
A Bayes consistent 1-NN classifier. - Korlakai Vinayak Rashmi, Ran Gilad-Bachrach:
DART: Dropouts meet Multiple Additive Regression Trees. - Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, Larry A. Wasserman:
On Estimating L22 Divergence. - Volodymyr Kuleshov, Arun Tejasvi Chaganty, Percy Liang:
Tensor Factorization via Matrix Factorization. - Alex Kulesza, Nan Jiang, Satinder Singh:
Low-Rank Spectral Learning with Weighted Loss Functions. - Sven Kurras:
Symmetric Iterative Proportional Fitting. - Branislav Kveton, Zheng Wen, Azin Ashkan, Csaba Szepesvári:
Tight Regret Bounds for Stochastic Combinatorial Semi-Bandits. - Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. - Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh:
Particle Gibbs for Bayesian Additive Regression Trees. - Chen-Yu Lee, Saining Xie, Patrick W. Gallagher, Zhengyou Zhang, Zhuowen Tu:
Deeply-Supervised Nets. - Jay Lee, Manzil Zaheer, Stephan Günnemann, Alexander J. Smola:
Preferential Attachment in Graphs with Affinities. - Juho Lee, Seungjin Choi:
Bayesian Hierarchical Clustering with Exponential Family: Small-Variance Asymptotics and Reducibility. - Guy Lever, Ronnie Stafford:
Modelling Policies in MDPs in Reproducing Kernel Hilbert Space. - Bo Li, Yevgeniy Vorobeychik:
Scalable Optimization of Randomized Operational Decisions in Adversarial Classification Settings. - Lihong Li, Rémi Munos, Csaba Szepesvári:
Toward Minimax Off-policy Value Estimation. - Ping Li, Cun-Hui Zhang:
Compressed Sensing with Very Sparse Gaussian Random Projections. - Xin Li, Yuhong Guo:
Max-Margin Zero-Shot Learning for Multi-class Classification. - Xin Li, Feipeng Zhao, Yuhong Guo:
Conditional Restricted Boltzmann Machines for Multi-label Learning with Incomplete Labels. - Yen-Huan Li, Jonathan Scarlett, Pradeep Ravikumar, Volkan Cevher:
Sparsistency of 1-Regularized M-Estimators. - Kuan Liu, Aurélien Bellet, Fei Sha:
Similarity Learning for High-Dimensional Sparse Data. - Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, Andreas Krause:
Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning. - Yifei Ma, Danica J. Sutherland, Roman Garnett, Jeff G. Schneider:
Active Pointillistic Pattern Search. - Shike Mei, Xiaojin Zhu:
The Security of Latent Dirichlet Allocation. - Igor Melnyk, Arindam Banerjee:
A Spectral Algorithm for Inference in Hidden semi-Markov Models. - Ofer Meshi, Nathan Srebro, Tamir Hazan:
Efficient Training of Structured SVMs via Soft Constraints. - James Neufeld, Dale Schuurmans, Michael H. Bowling:
Variance Reduction via Antithetic Markov Chains. - Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Eric P. Xing, Hy Trac, Shirley Ho, Jeff G. Schneider:
Fast Function to Function Regression. - Pedro A. Ortega, Kee-Eung Kim, Daniel D. Lee:
Reactive bandits with attitude. - Saurabh Paul, Malik Magdon-Ismail, Petros Drineas:
Feature Selection for Linear SVM with Provable Guarantees. - Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro M. Domingos:
On Theoretical Properties of Sum-Product Networks. - Vu Pham, Laurent El Ghaoui:
Robust sketching for multiple square-root LASSO problems. - Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David M. Blei:
Deep Exponential Families. - Sashank J. Reddi, Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the High Dimensional Power of a Linear-Time Two Sample Test under Mean-shift Alternatives. - Shaogang Ren, Shuai Huang, John A. Onofrey, Xenios Papademetris, Xiaoning Qian:
A Scalable Algorithm for Structured Kernel Feature Selection. - Jonathan Root, Jing Qian, Venkatesh Saligrama:
Learning Efficient Anomaly Detectors from K-NN Graphs. - Anirban Roychowdhury, Brian Kulis:
Gamma Processes, Stick-Breaking, and Variational Inference. - Hiroaki Sasaki, Yung-Kyun Noh, Masashi Sugiyama:
Direct Density-Derivative Estimation and Its Application in KL-Divergence Approximation. - Mark Schmidt, Reza Babanezhad, Mohamed Osama Ahmed, Aaron Defazio, Ann Clifton, Anoop Sarkar:
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields. - François Schnitzler, Jia Yuan Yu, Shie Mannor:
Sensor Selection for Crowdsensing Dynamical Systems. - Clayton Scott:
A Rate of Convergence for Mixture Proportion Estimation, with Application to Learning from Noisy Labels. - Eleni Sgouritsa, Dominik Janzing, Philipp Hennig, Bernhard Schölkopf:
Inference of Cause and Effect with Unsupervised Inverse Regression. - Nihar B. Shah, Sivaraman Balakrishnan, Joseph K. Bradley, Abhay Parekh, Kannan Ramchandran, Martin J. Wainwright:
Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence. - Roshan Shariff, András György, Csaba Szepesvári:
Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM. - Tianlin Shi, Jacob Steinhardt, Percy Liang:
Learning Where to Sample in Structured Prediction. - Arno Solin, Simo Särkkä:
State Space Methods for Efficient Inference in Student-t Process Regression. - Shuang Song, Kamalika Chaudhuri, Anand D. Sarwate:
Learning from Data with Heterogeneous Noise using SGD. - Suvrit Sra, Reshad Hosseini, Lucas Theis, Matthias Bethge:
Data modeling with the elliptical gamma distribution. - Sanvesh Srivastava, Volkan Cevher, Quoc Tran-Dinh, David B. Dunson:
WASP: Scalable Bayes via barycenters of subset posteriors. - Julien Stoehr, Nial Friel:
Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields. - Julian Straub, Jason Chang, Oren Freifeld, John W. Fisher III:
A Dirichlet Process Mixture Model for Spherical Data. - Siqi Sun, Hai Wang, Jinbo Xu:
Inferring Block Structure of Graphical Models in Exponential Families. - Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Two-stage sampled learning theory on distributions. - Rikiya Takahashi, Tetsuro Morimura:
Predicting Preference Reversals via Gaussian Process Uncertainty Aversion. - Alex Tank, Nicholas J. Foti, Emily B. Fox:
Streaming Variational Inference for Bayesian Nonparametric Mixture Models. - Jin Tian:
Missing at Random in Graphical Models. - Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. - Herke van Hoof, Jan Peters, Gerhard Neumann:
Learning of Non-Parametric Control Policies with High-Dimensional State Features. - Greg Ver Steeg, Aram Galstyan:
Maximally Informative Hierarchical Representations of High-Dimensional Data. - Fulton Wang, Cynthia Rudin:
Falling Rule Lists. - Xu Wang, Konstantinos Slavakis, Gilad Lerman:
Multi-Manifold Modeling in Non-Euclidean spaces. - Yining Wang, Aarti Singh:
Column Subset Selection with Missing Data via Active Sampling. - Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani:
Trend Filtering on Graphs. - Fabian L. Wauthier, Peter Donnelly:
A Greedy Homotopy Method for Regression with Nonconvex Constraints. - Adrian Weller:
Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs. - Yi Wu, David P. Wipf, Jeong-Min Yun:
Understanding and Evaluating Sparse Linear Discriminant Analysis. - Kevin S. Xu:
Stochastic Block Transition Models for Dynamic Networks. - Zhirong Yang, Jaakko Peltonen, Samuel Kaski:
Majorization-Minimization for Manifold Embedding. - Zichao Yang, Andrew Gordon Wilson, Alexander J. Smola, Le Song:
A la Carte - Learning Fast Kernels. - Yaoliang Yu, Xun Zheng, Micol Marchetti-Bowick, Eric P. Xing:
Minimizing Nonconvex Non-Separable Functions. - Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou:
A Simple Homotopy Algorithm for Compressive Sensing. - Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan (Alan) Qi, Youngja Park:
Scalable Nonparametric Multiway Data Analysis. - Mingyuan Zhou:
Infinite Edge Partition Models for Overlapping Community Detection and Link Prediction. - Xiangyang Zhou, Jiaxin Zhang, Brian Kulis:
Power-Law Graph Cuts. - Yuancheng Zhu, Rina Foygel Barber:
The Log-Shift Penalty for Adaptive Estimation of Multiple Gaussian Graphical Models.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.