default search action
Geoffrey J. Gordon
Person information
- affiliation: Machine Learning Department, Carnegie Mellon University
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c116]My Phan, Kianté Brantley, Stephanie Milani, Soroush Mehri, Gokul Swamy, Geoffrey J. Gordon:
When is Transfer Learning Possible? ICML 2024 - [i51]Shiva Kaul, Geoffrey J. Gordon:
Meta-Analysis with Untrusted Data. CoRR abs/2407.09387 (2024) - [i50]Zhuorui Ye, Stephanie Milani, Geoffrey J. Gordon, Fei Fang:
Concept-Based Interpretable Reinforcement Learning with Limited to No Human Labels. CoRR abs/2407.15786 (2024) - 2022
- [j17]Han Zhao, Geoffrey J. Gordon:
Inherent Tradeoffs in Learning Fair Representations. J. Mach. Learn. Res. 23: 57:1-57:26 (2022) - [j16]Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, Pradeep Ravikumar:
Fundamental Limits and Tradeoffs in Invariant Representation Learning. J. Mach. Learn. Res. 23: 340:1-340:49 (2022) - 2021
- [c115]Kianté Brantley, Soroush Mehri, Geoffrey J. Gordon:
Successor Feature Sets: Generalizing Successor Representations Across Policies. AAAI 2021: 11774-11781 - [c114]Jianfeng Chi, Yuan Tian, Geoffrey J. Gordon, Han Zhao:
Understanding and Mitigating Accuracy Disparity in Regression. ICML 2021: 1866-1876 - [c113]Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi S. Jaakkola, Geoffrey J. Gordon, Stefanie Jegelka, Ruslan Salakhutdinov:
Information Obfuscation of Graph Neural Networks. ICML 2021: 6600-6610 - [c112]Alessandro Sordoni, Nouha Dziri, Hannes Schulz, Geoffrey J. Gordon, Philip Bachman, Remi Tachet des Combes:
Decomposed Mutual Information Estimation for Contrastive Representation Learning. ICML 2021: 9859-9869 - [i49]Jianfeng Chi, Yuan Tian, Geoffrey J. Gordon, Han Zhao:
Understanding and Mitigating Accuracy Disparity in Regression. CoRR abs/2102.12013 (2021) - [i48]Kianté Brantley, Soroush Mehri, Geoffrey J. Gordon:
Successor Feature Sets: Generalizing Successor Representations Across Policies. CoRR abs/2103.02650 (2021) - [i47]Alessandro Sordoni, Nouha Dziri, Hannes Schulz, Geoffrey J. Gordon, Philip Bachman, Remi Tachet des Combes:
Decomposed Mutual Information Estimation for Contrastive Representation Learning. CoRR abs/2106.13401 (2021) - 2020
- [c111]Ching-An Cheng, Remi Tachet des Combes, Byron Boots, Geoffrey J. Gordon:
A Reduction from Reinforcement Learning to No-Regret Online Learning. AISTATS 2020: 3514-3524 - [c110]Sandesh Adhikary, Siddarth Srinivasan, Geoffrey J. Gordon, Byron Boots:
Expressiveness and Learning of Hidden Quantum Markov Models. AISTATS 2020: 4151-4161 - [c109]Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon:
An Empirical Investigation of Beam-Aware Training in Supertagging. EMNLP (Findings) 2020: 4534-4542 - [c108]Han Zhao, Amanda Coston, Tameem Adel, Geoffrey J. Gordon:
Conditional Learning of Fair Representations. ICLR 2020 - [c107]Han Zhao, Jianfeng Chi, Yuan Tian, Geoffrey J. Gordon:
Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation. NeurIPS 2020 - [c106]Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, Geoffrey J. Gordon:
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift. NeurIPS 2020 - [i46]Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, Geoffrey J. Gordon:
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift. CoRR abs/2003.04475 (2020) - [i45]Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi S. Jaakkola, Geoffrey J. Gordon, Stefanie Jegelka, Ruslan Salakhutdinov:
Graph Adversarial Networks: Protecting Information against Adversarial Attacks. CoRR abs/2009.13504 (2020) - [i44]Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon:
An Empirical Investigation of Beam-Aware Training in Supertagging. CoRR abs/2010.04980 (2020) - [i43]Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, Pradeep Ravikumar:
Fundamental Limits and Tradeoffs in Invariant Representation Learning. CoRR abs/2012.10713 (2020)
2010 – 2019
- 2019
- [c105]Han Zhao, Junjie Hu, Zhenyao Zhu, Adam Coates, Geoffrey J. Gordon:
Deep Generative and Discriminative Domain Adaptation. AAMAS 2019: 2315-2317 - [c104]Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, Geoffrey J. Gordon:
An Empirical Study of Example Forgetting during Deep Neural Network Learning. ICLR (Poster) 2019 - [c103]Han Zhao, Remi Tachet des Combes, Kun Zhang, Geoffrey J. Gordon:
On Learning Invariant Representations for Domain Adaptation. ICML 2019: 7523-7532 - [c102]Han Zhao, Yao-Hung Hubert Tsai, Ruslan Salakhutdinov, Geoffrey J. Gordon:
Learning Neural Networks with Adaptive Regularization. NeurIPS 2019: 11389-11400 - [c101]Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon, Darshan Patil, Nghia Le, Daniel Ferreira:
Towards modular and programmable architecture search. NeurIPS 2019: 13715-13725 - [c100]Han Zhao, Geoffrey J. Gordon:
Inherent Tradeoffs in Learning Fair Representations. NeurIPS 2019: 15649-15659 - [c99]Han Zhao, Otilia Stretcu, Alexander J. Smola, Geoffrey J. Gordon:
Efficient Multitask Feature and Relationship Learning. UAI 2019: 777-787 - [i42]Han Zhao, Remi Tachet des Combes, Kun Zhang, Geoffrey J. Gordon:
On Learning Invariant Representation for Domain Adaptation. CoRR abs/1901.09453 (2019) - [i41]Han Zhao, Jianfeng Chi, Yuan Tian, Geoffrey J. Gordon:
Adversarial Task-Specific Privacy Preservation under Attribute Attack. CoRR abs/1906.07902 (2019) - [i40]Han Zhao, Geoffrey J. Gordon:
Inherent Tradeoffs in Learning Fair Representation. CoRR abs/1906.08386 (2019) - [i39]Han Zhao, Yao-Hung Hubert Tsai, Ruslan Salakhutdinov, Geoffrey J. Gordon:
Learning Neural Networks with Adaptive Regularization. CoRR abs/1907.06288 (2019) - [i38]Renato Negrinho, Darshan Patil, Nghia Le, Daniel Ferreira, Matthew R. Gormley, Geoffrey J. Gordon:
Towards modular and programmable architecture search. CoRR abs/1909.13404 (2019) - [i37]Han Zhao, Amanda Coston, Tameem Adel, Geoffrey J. Gordon:
Conditional Learning of Fair Representations. CoRR abs/1910.07162 (2019) - [i36]Ching-An Cheng, Remi Tachet des Combes, Byron Boots, Geoffrey J. Gordon:
A Reduction from Reinforcement Learning to No-Regret Online Learning. CoRR abs/1911.05873 (2019) - [i35]Sandesh Adhikary, Siddarth Srinivasan, Geoffrey J. Gordon, Byron Boots:
Expressiveness and Learning of Hidden Quantum Markov Models. CoRR abs/1912.02098 (2019) - 2018
- [j15]Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao, Siyuan Sheng, Andrew Pavlo, Geoffrey J. Gordon:
A Demonstration of the OtterTune Automatic Database Management System Tuning Service. Proc. VLDB Endow. 11(12): 1910-1913 (2018) - [c98]Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon:
An Efficient, Expressive and Local Minima-Free Method for Learning Controlled Dynamical Systems. AAAI 2018: 3191-3198 - [c97]Siddarth Srinivasan, Geoffrey J. Gordon, Byron Boots:
Learning Hidden Quantum Markov Models. AISTATS 2018: 1979-1987 - [c96]Han Zhao, Shanghang Zhang, Guanhang Wu, João Paulo Costeira, José M. F. Moura, Geoffrey J. Gordon:
Multiple Source Domain Adaptation with Adversarial Learning. ICLR (Workshop) 2018 - [c95]Ahmed Hefny, Zita Marinho, Wen Sun, Siddhartha S. Srinivasa, Geoffrey J. Gordon:
Recurrent Predictive State Policy Networks. ICML 2018: 1954-1963 - [c94]Wen Sun, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell:
Dual Policy Iteration. NeurIPS 2018: 7059-7069 - [c93]Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F. Moura, João Paulo Costeira, Geoffrey J. Gordon:
Adversarial Multiple Source Domain Adaptation. NeurIPS 2018: 8568-8579 - [c92]Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon:
Learning Beam Search Policies via Imitation Learning. NeurIPS 2018: 10675-10684 - [c91]Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, Geoffrey J. Gordon:
Query-based Workload Forecasting for Self-Driving Database Management Systems. SIGMOD Conference 2018: 631-645 - [c90]Han Zhao, Geoffrey J. Gordon:
Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint. UAI 2018: 124-134 - [i34]Ahmed Hefny, Zita Marinho, Wen Sun, Siddhartha S. Srinivasa, Geoffrey J. Gordon:
Recurrent Predictive State Policy Networks. CoRR abs/1803.01489 (2018) - [i33]Wen Sun, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell:
Dual Policy Iteration. CoRR abs/1805.10755 (2018) - [i32]Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon:
Learning Beam Search Policies via Imitation Learning. CoRR abs/1811.00512 (2018) - [i31]Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, Geoffrey J. Gordon:
An Empirical Study of Example Forgetting during Deep Neural Network Learning. CoRR abs/1812.05159 (2018) - 2017
- [c89]Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell:
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction. ICML 2017: 3309-3318 - [c88]Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey J. Gordon, Boyue Li:
Predictive State Recurrent Neural Networks. NIPS 2017: 6053-6064 - [c87]Han Zhao, Geoffrey J. Gordon:
Linear Time Computation of Moments in Sum-Product Networks. NIPS 2017: 6894-6903 - [c86]Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, Bohan Zhang:
Automatic Database Management System Tuning Through Large-scale Machine Learning. SIGMOD Conference 2017: 1009-1024 - [i30]Carlton Downey, Ahmed Hefny, Geoffrey J. Gordon:
Practical Learning of Predictive State Representations. CoRR abs/1702.04121 (2017) - [i29]Han Zhao, Otilia Stretcu, Renato Negrinho, Alexander J. Smola, Geoffrey J. Gordon:
Efficient Multi-task Feature and Relationship Learning. CoRR abs/1702.04423 (2017) - [i28]Han Zhao, Geoffrey J. Gordon:
Efficient Computation of Moments in Sum-Product Networks. CoRR abs/1702.04767 (2017) - [i27]Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell:
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction. CoRR abs/1703.01030 (2017) - [i26]Renato Negrinho, Geoffrey J. Gordon:
DeepArchitect: Automatically Designing and Training Deep Architectures. CoRR abs/1704.08792 (2017) - [i25]Han Zhao, Zhenyao Zhu, Junjie Hu, Adam Coates, Geoffrey J. Gordon:
Principled Hybrids of Generative and Discriminative Domain Adaptation. CoRR abs/1705.09011 (2017) - [i24]Han Zhao, Shanghang Zhang, Guanhang Wu, João Paulo Costeira, José M. F. Moura, Geoffrey J. Gordon:
Multiple Source Domain Adaptation with Adversarial Training of Neural Networks. CoRR abs/1705.09684 (2017) - [i23]Han Zhao, Geoffrey J. Gordon:
Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint. CoRR abs/1706.06348 (2017) - [i22]Gilwoo Lee, Zita Marinho, Aaron M. Johnson, Geoffrey J. Gordon, Siddhartha S. Srinivasa, Matthew T. Mason:
Unsupervised Learning for Nonlinear PieceWise Smooth Hybrid Systems. CoRR abs/1710.00440 (2017) - 2016
- [c85]Han Zhao, Tameem Adel, Geoffrey J. Gordon, Brandon Amos:
Collapsed Variational Inference for Sum-Product Networks. ICML 2016: 1310-1318 - [c84]Mohammad Hassan Falakmasir, José P. González-Brenes, Geoffrey J. Gordon, Kristen E. DiCerbo:
A Data-Driven Approach for Inferring Student Proficiency from Game Activity Logs. L@S 2016: 341-349 - [c83]Han Zhao, Pascal Poupart, Geoffrey J. Gordon:
A Unified Approach for Learning the Parameters of Sum-Product Networks. NIPS 2016: 433-441 - [c82]Zita Marinho, Byron Boots, Anca D. Dragan, Arunkumar Byravan, Geoffrey J. Gordon, Siddhartha S. Srinivasa:
Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces. Robotics: Science and Systems 2016 - [c81]Wen Sun, Roberto Capobianco, Geoffrey J. Gordon, J. Andrew Bagnell, Byron Boots:
Learning to Smooth with Bidirectional Predictive State Inference Machines. UAI 2016 - [i21]Han Zhao, Pascal Poupart, Geoffrey J. Gordon:
A Unified Approach for Learning the Parameters of Sum-Product Networks. CoRR abs/1601.00318 (2016) - [i20]Zita Marinho, Anca D. Dragan, Arunkumar Byravan, Byron Boots, Siddhartha S. Srinivasa, Geoffrey J. Gordon:
Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces. CoRR abs/1601.03648 (2016) - 2015
- [c80]Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon:
Supervised Learning for Dynamical System Learning. NIPS 2015: 1963-1971 - [i19]Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon:
A New View of Predictive State Methods for Dynamical System Learning. CoRR abs/1505.05310 (2015) - 2014
- [j14]Khalil Ghorbal, Jean-Baptiste Jeannin, Erik Zawadzki, André Platzer, Geoffrey J. Gordon, Peter Capell:
Hybrid Theorem Proving of Aerospace Systems: Applications and Challenges. J. Aerosp. Inf. Syst. 11(10): 702-713 (2014) - [c79]Ahmed Hefny, Robert E. Kass, Sanjeev Khanna, Matthew A. Smith, Geoffrey J. Gordon:
Fast and Improved SLEX Analysis of High-Dimensional Time Series. MLINI@NIPS 2014: 94-103 - 2013
- [c78]Michael Yudelson, Kenneth R. Koedinger, Geoffrey J. Gordon:
Individualized Bayesian Knowledge Tracing Models. AIED 2013: 171-180 - [c77]Anika Gupta, Katia P. Sycara, Geoffrey J. Gordon, Ahmed Hefny:
Exploring friend's influence in cultures in Twitter. ASONAM 2013: 584-591 - [c76]Mohammad Hassan Falakmasir, Zachary A. Pardos, Geoffrey J. Gordon, Peter Brusilovsky:
A Spectral Learning Approach to Knowledge Tracing. EDM 2013: 28-34 - [c75]Byron Boots, Geoffrey J. Gordon:
A Spectral Learning Approach to Range-Only SLAM. ICML (1) 2013: 19-26 - [c74]Erik Peter Zawadzki, André Platzer, Geoffrey J. Gordon:
A Generalization of SAT and #SAT for Robust Policy Evaluation. IJCAI 2013: 2583-2590 - [c73]Byron Boots, Geoffrey J. Gordon, Arthur Gretton:
Hilbert Space Embeddings of Predictive State Representations. UAI 2013 - [i18]Carlos Guestrin, Geoffrey J. Gordon:
Distributed Planning in Hierarchical Factored MDPs. CoRR abs/1301.0571 (2013) - [i17]Geoffrey J. Gordon:
Galerkin Methods for Complementarity Problems and Variational Inequalities. CoRR abs/1306.4753 (2013) - [i16]Byron Boots, Geoffrey J. Gordon, Arthur Gretton:
Hilbert Space Embeddings of Predictive State Representations. CoRR abs/1309.6819 (2013) - 2012
- [c72]Pradeep Varakantham, Shih-Fen Cheng, Geoffrey J. Gordon, Asrar Ahmed:
Decision Support for Agent Populations in Uncertain and Congested Environments. AAAI 2012: 1471-1477 - [c71]Geoffrey J. Gordon, Pradeep Varakantham, William Yeoh, Hoong Chuin Lau, Ajay S. Aravamudhan, Shih-Fen Cheng:
Lagrangian relaxation for large-scale multi-agent planning. AAMAS 2012: 1227-1228 - [c70]Brian D. Ziebart, Miroslav Dudík, Geoffrey J. Gordon, Katia P. Sycara, Wendi L. Adair, Jeanne M. Brett:
Identifying Culture and Leveraging Cultural Differences for Negotiation Agents. HICSS 2012: 618-627 - [c69]Geoffrey J. Gordon, Pradeep Varakantham, William Yeoh, Hoong Chuin Lau, Ajay S. Aravamudhan, Shih-Fen Cheng:
Lagrangian Relaxation for Large-Scale Multi-agent Planning. IAT 2012: 494-501 - [c68]Byron Boots, Geoffrey J. Gordon:
Two Manifold Problems with Applications to Nonlinear System Identification. ICML 2012 - [i15]Ajit Paul Singh, Geoffrey J. Gordon:
A Bayesian Matrix Factorization Model for Relational Data. CoRR abs/1203.3517 (2012) - [i14]Geoffrey J. Gordon, Sue Ann Hong, Miroslav Dudík:
First-Order Mixed Integer Linear Programming. CoRR abs/1205.2644 (2012) - [i13]Miroslav Dudík, Geoffrey J. Gordon:
A Sampling-Based Approach to Computing Equilibria in Succinct Extensive-Form Games. CoRR abs/1205.2649 (2012) - [i12]Byron Boots, Geoffrey J. Gordon:
Two-Manifold Problems with Applications to Nonlinear System Identification. CoRR abs/1206.4648 (2012) - [i11]Byron Boots, Geoffrey J. Gordon:
A Spectral Learning Approach to Range-Only SLAM. CoRR abs/1207.2491 (2012) - [i10]Matthew Rosencrantz, Geoffrey J. Gordon, Sebastian Thrun:
Decentralized Sensor Fusion With Distributed Particle Filters. CoRR abs/1212.2493 (2012) - [i9]Joelle Pineau, Geoffrey J. Gordon, Sebastian Thrun:
Policy-contingent abstraction for robust robot control. CoRR abs/1212.2495 (2012) - [i8]Geoffrey J. Gordon:
Fast Solutions to Projective Monotone Linear Complementarity Problems. CoRR abs/1212.6958 (2012) - 2011
- [j13]Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon:
Closing the learning-planning loop with predictive state representations. Int. J. Robotics Res. 30(7): 954-966 (2011) - [c67]Byron Boots, Geoffrey J. Gordon:
An Online Spectral Learning Algorithm for Partially Observable Nonlinear Dynamical Systems. AAAI 2011: 293-300 - [c66]Min Chi, Kenneth R. Koedinger, Geoffrey J. Gordon, Pamela W. Jordan, Kurt VanLehn:
Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions. EDM 2011: 61-70 - [c65]Anca D. Dragan, Geoffrey J. Gordon, Siddhartha S. Srinivasa:
Learning from Experience in Manipulation Planning: Setting the Right Goals. ISRR 2011: 309-326 - [c64]Geoffrey J. Gordon, David B. Dunson:
Preface. AISTATS 2011: 1-2 - [c63]Sue Ann Hong, Geoffrey J. Gordon:
Optimal Distributed Market-Based Planning for Multi-Agent Systems with Shared Resources. AISTATS 2011: 351-360 - [c62]Stéphane Ross, Geoffrey J. Gordon, Drew Bagnell:
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTATS 2011: 627-635 - [c61]Erik Zawadzki, Geoffrey J. Gordon, André Platzer:
An Instantiation-Based Theorem Prover for First-Order Programming. AISTATS 2011: 855-863 - [e1]Geoffrey J. Gordon, David B. Dunson, Miroslav Dudík:
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. JMLR Proceedings 15, JMLR.org 2011 [contents] - [i7]Geoffrey J. Gordon, Nicholas Roy, Sebastian Thrun:
Finding Approximate POMDP solutions Through Belief Compression. CoRR abs/1107.0053 (2011) - [i6]Joelle Pineau, Geoffrey J. Gordon, Sebastian Thrun:
Anytime Point-Based Approximations for Large POMDPs. CoRR abs/1110.0027 (2011) - [i5]Byron Boots, Geoffrey J. Gordon:
Two-Manifold Problems. CoRR abs/1112.6399 (2011) - 2010
- [j12]Peng Yang, Randy A. Freeman, Geoffrey J. Gordon, Kevin M. Lynch, Siddhartha S. Srinivasa, Rahul Sukthankar:
Decentralized estimation and control of graph connectivity for mobile sensor networks. Autom. 46(2): 390-396 (2010) - [c60]Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon:
Closing the learning-planning loop with predictive state representations. AAMAS 2010: 1369-1370 - [c59]Julian Ramos, Sajid M. Siddiqi, Artur Dubrawski, Geoffrey J. Gordon, Abhishek Sharma:
Automatic state discovery for unstructured audio scene classification. ICASSP 2010: 2154-2157 - [c58]Le Song, Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon, Alexander J. Smola:
Hilbert Space Embeddings of Hidden Markov Models. ICML 2010: 991-998 - [c57]Byron Boots, Geoffrey J. Gordon:
Predictive State Temporal Difference Learning. NIPS 2010: 271-279 - [c56]Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon:
Closing the Learning-Planning Loop with Predictive State Representations. Robotics: Science and Systems 2010 - [c55]Ajit Paul Singh, Geoffrey J. Gordon:
A Bayesian Matrix Factorization Model for Relational Data. UAI 2010: 556-563 - [c54]Sajid M. Siddiqi, Byron Boots, Geoffrey J. Gordon:
Reduced-Rank Hidden Markov Models. AISTATS 2010: 741-748 - [i4]Byron Boots, Geoffrey J. Gordon:
Predictive State Temporal Difference Learning. CoRR abs/1011.0041 (2010) - [i3]Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell:
No-Regret Reductions for Imitation Learning and Structured Prediction. CoRR abs/1011.0686 (2010)
2000 – 2009
- 2009
- [c53]Miroslav Dudík, Geoffrey J. Gordon:
A Sampling-Based Approach to Computing Equilibria in Succinct Extensive-Form Games. UAI 2009: 151-160 - [c52]Geoffrey J. Gordon, Sue Ann Hong, Miroslav Dudík:
First-Order Mixed Integer Linear Programming. UAI 2009: 213-222 - [c51]Thomas S. Stepleton, Zoubin Ghahramani, Geoffrey J. Gordon, Tai Sing Lee:
The Block Diagonal Infinite Hidden Markov Model. AISTATS 2009: 552-559 - [i2]Sajid M. Siddiqi, Byron Boots, Geoffrey J. Gordon:
Reduced-Rank Hidden Markov Models. CoRR abs/0910.0902 (2009) - [i1]Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon:
Closing the Learning-Planning Loop with Predictive State Representations. CoRR abs/0912.2385 (2009) - 2008
- [j11]Maxim Likhachev, Dave Ferguson, Geoffrey J. Gordon, Anthony Stentz, Sebastian Thrun:
Anytime search in dynamic graphs. Artif. Intell. 172(14): 1613-1643 (2008) - [j10]Shann-Ching Chen, Geoffrey J. Gordon, Robert F. Murphy:
Graphical Models for Structured Classification, with an Application to Interpreting Images of Protein Subcellular Location Patterns. J. Mach. Learn. Res. 9: 651-682 (2008) - [c50]Michael Freed, Jaime G. Carbonell, Geoffrey J. Gordon, Jordan Hayes, Brad A. Myers, Daniel P. Siewiorek, Stephen F. Smith, Aaron Steinfeld, Anthony Tomasic:
RADAR: A Personal Assistant that Learns to Reduce Email Overload. AAAI 2008: 1287-1293 - [c49]Peng Yang, Randy A. Freeman, Geoffrey J. Gordon, Kevin M. Lynch, Siddhartha S. Srinivasa, Rahul Sukthankar:
Decentralized estimation and control of graph connectivity in mobile sensor networks. ACC 2008: 2678-2683 - [c48]Jan-P. Calliess, Geoffrey J. Gordon:
No-regret learning and a mechanism for distributed multiagent planning. AAMAS (1) 2008: 509-516 - [c47]Geoffrey J. Gordon, Amy Greenwald, Casey Marks:
No-regret learning in convex games. ICML 2008: 360-367 - [c46]Irina Rish, Genady Grabarnik, Guillermo A. Cecchi, Francisco Pereira, Geoffrey J. Gordon:
Closed-form supervised dimensionality reduction with generalized linear models. ICML 2008: 832-839 - [c45]Ajit Paul Singh, Geoffrey J. Gordon:
Relational learning via collective matrix factorization. KDD 2008: 650-658 - [c44]Ajit Paul Singh, Geoffrey J. Gordon:
A Unified View of Matrix Factorization Models. ECML/PKDD (2) 2008: 358-373 - 2007
- [j9]Geoffrey J. Gordon:
Agendas for multi-agent learning. Artif. Intell. 171(7): 392-401 (2007) - [c43]H. Brendan McMahan, Geoffrey J. Gordon:
A Unification of Extensive-Form Games and Markov Decision Processes. AAAI 2007: 86-93 - [c42]Kian Hsiang Low, Geoffrey J. Gordon, John M. Dolan, Pradeep K. Khosla:
Adaptive Sampling for Multi-Robot Wide-Area Exploration. ICRA 2007: 755-760 - [c41]Shann-Ching Chen, Ting Zhao, Geoffrey J. Gordon, Robert F. Murphy:
Automated image analysis of protein localization in budding yeast. ISMB/ECCB (Supplement of Bioinformatics) 2007: 66-71 - [c40]Sajid M. Siddiqi, Byron Boots, Geoffrey J. Gordon:
A Constraint Generation Approach to Learning Stable Linear Dynamical Systems. NIPS 2007: 1329-1336 - [c39]H. Brendan McMahan, Geoffrey J. Gordon:
A Fast Bundle-based Anytime Algorithm for Poker and other Convex Games. AISTATS 2007: 323-330 - [c38]Purnamrita Sarkar, Sajid M. Siddiqi, Geoffrey J. Gordon:
A Latent Space Approach to Dynamic Embedding of Co-occurrence Data. AISTATS 2007: 420-427 - [c37]Sajid M. Siddiqi, Geoffrey J. Gordon, Andrew W. Moore:
Fast State Discovery for HMM Model Selection and Learning. AISTATS 2007: 492-499 - 2006
- [j8]Brian P. Gerkey, Sebastian Thrun, Geoffrey J. Gordon:
Visibility-based Pursuit-evasion with Limited Field of View. Int. J. Robotics Res. 25(4): 299-315 (2006) - [j7]Joelle Pineau, Geoffrey J. Gordon, Sebastian Thrun:
Anytime Point-Based Approximations for Large POMDPs. J. Artif. Intell. Res. 27: 335-380 (2006) - [j6]Nikos Vlassis, Geoffrey J. Gordon, Joelle Pineau:
Planning under uncertainty in robotics. Robotics Auton. Syst. 54(11): 885-886 (2006) - [c36]Matthijs T. J. Spaan, Geoffrey J. Gordon, Nikos Vlassis:
Decentralized planning under uncertainty for teams of communicating agents. AAMAS 2006: 249-256 - [c35]Shann-Ching Chen, Ting Zhao, Geoffrey J. Gordon, Robert F. Murphy:
A Novel Graphical Model Approach to Segmenting Cell Images. CIBCB 2006: 1-8 - [c34]Purnamrita Sarkar, Sajid M. Siddiqi, Geoffrey J. Gordon:
Approximate Kalman Filters for Embedding Author-Word Co-occurrence Data over Time. SNA@ICML 2006: 126-139 - [c33]Francisco Pereira, Geoffrey J. Gordon:
The support vector decomposition machine. ICML 2006: 689-696 - [c32]Shann-Ching Chen, Geoffrey J. Gordon, Robert F. Murphy:
A novel approximate inference approach to automated classification of protein subcellular location patterns in multi-cell images. ISBI 2006: 558-561 - [c31]Geoffrey J. Gordon:
No-regret Algorithms for Online Convex Programs. NIPS 2006: 489-496 - [c30]Chris Murray, Geoffrey J. Gordon:
Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General-Sum Stochastic Games. NIPS 2006: 1001-1008 - 2005
- [j5]Nicholas Roy, Geoffrey J. Gordon, Sebastian Thrun:
Finding Approximate POMDP solutions Through Belief Compression. J. Artif. Intell. Res. 23: 1-40 (2005) - [c29]H. Brendan McMahan, Geoffrey J. Gordon:
Fast Exact Planning in Markov Decision Processes. ICAPS 2005: 151-160 - [c28]Maxim Likhachev, David I. Ferguson, Geoffrey J. Gordon, Anthony Stentz, Sebastian Thrun:
Anytime Dynamic A*: An Anytime, Replanning Algorithm. ICAPS 2005: 262-271 - [c27]H. Brendan McMahan, Maxim Likhachev, Geoffrey J. Gordon:
Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees. ICML 2005: 569-576 - [c26]Rosemary Emery-Montemerlo, Geoffrey J. Gordon, Jeff G. Schneider, Sebastian Thrun:
Game Theoretic Control for Robot Teams. ICRA 2005: 1163-1169 - [c25]Joelle Pineau, Geoffrey J. Gordon:
POMDP Planning for Robust Robot Control. ISRR 2005: 69-82 - 2004
- [j4]Vandi Verma, Geoffrey J. Gordon, Reid G. Simmons, Sebastian Thrun:
Real-time fault diagnosis [robot fault diagnosis]. IEEE Robotics Autom. Mag. 11(2): 56-66 (2004) - [c24]Brian P. Gerkey, Sebastian Thrun, Geoffrey J. Gordon:
Visibility-Based Pursuit-Evasion with Limited Field of View. AAAI 2004: 20-27 - [c23]Rosemary Emery-Montemerlo, Geoffrey J. Gordon, Jeff G. Schneider, Sebastian Thrun:
Approximate Solutions for Partially Observable Stochastic Games with Common Payoffs. AAMAS 2004: 136-143 - [c22]Matthew Rosencrantz, Geoffrey J. Gordon, Sebastian Thrun:
Learning low dimensional predictive representations. ICML 2004 - [c21]Maxim Likhachev, Geoffrey J. Gordon, Sebastian Thrun:
Planning for Markov Decision Processes with Sparse Stochasticity. NIPS 2004: 785-792 - 2003
- [c20]Matthew Rosencrantz, Geoffrey J. Gordon, Sebastian Thrun:
Locating moving entities in indoor environments with teams of mobile robots. AAMAS 2003: 233-240 - [c19]Nicholas Roy, Geoffrey J. Gordon, Sebastian Thrun:
Planning under Uncertainty for Reliable Health Care Robotics. FSR 2003: 417-426 - [c18]H. Brendan McMahan, Geoffrey J. Gordon, Avrim Blum:
Planning in the Presence of Cost Functions Controlled by an Adversary. ICML 2003: 536-543 - [c17]Joelle Pineau, Geoffrey J. Gordon, Sebastian Thrun:
Point-based value iteration: An anytime algorithm for POMDPs. IJCAI 2003: 1025-1032 - [c16]Sebastian Thrun, Geoffrey J. Gordon, Frank Pfenning, Mary Berna, Brennan Sellner, Brad Lisien:
A Learning Algorithm for Localizing People Based on Wireless Signal Strength that Uses Labeled and Unlabeled Data. IJCAI 2003: 1427-1428 - [c15]Joelle Pineau, Geoffrey J. Gordon, Sebastian Thrun:
Applying Metric-Trees to Belief-Point POMDPs. NIPS 2003: 759-766 - [c14]Maxim Likhachev, Geoffrey J. Gordon, Sebastian Thrun:
ARA*: Anytime A* with Provable Bounds on Sub-Optimality. NIPS 2003: 767-774 - [c13]Curt A. Bererton, Geoffrey J. Gordon, Sebastian Thrun:
Auction Mechanism Design for Multi-Robot Coordination. NIPS 2003: 879-886 - [c12]Aaron C. Courville, Nathaniel D. Daw, Geoffrey J. Gordon, David S. Touretzky:
Model Uncertainty in Classical Conditioning. NIPS 2003: 977-984 - [c11]Joelle Pineau, Geoffrey J. Gordon, Sebastian Thrun:
Policy-contingent abstraction for robust robot control. UAI 2003: 477-484 - [c10]Matthew Rosencrantz, Geoffrey J. Gordon, Sebastian Thrun:
Decentralized Sensor Fusion with Distributed Particle Filters. UAI 2003: 493-500 - 2002
- [c9]Geoffrey J. Gordon:
Generalized2 Linear2 Models. NIPS 2002: 577-584 - [c8]Nicholas Roy, Geoffrey J. Gordon:
Exponential Family PCA for Belief Compression in POMDPs. NIPS 2002: 1635-1642 - [c7]Carlos Guestrin, Geoffrey J. Gordon:
Distributed Planning in Hierarchical Factored MDPs. UAI 2002: 197-206 - 2000
- [c6]Geoffrey J. Gordon, Andrew W. Moore:
Learning Filaments. ICML 2000: 335-342 - [c5]Geoffrey J. Gordon:
Reinforcement Learning with Function Approximation Converges to a Region. NIPS 2000: 1040-1046
1990 – 1999
- 1999
- [c4]Geoffrey J. Gordon:
Regret Bounds for Prediction Problems. COLT 1999: 29-40 - 1997
- [j3]Gregory F. Cooper, Constantin F. Aliferis, Richard Ambrosino, John M. Aronis, Bruce G. Buchanan, Rich Caruana, Michael J. Fine, Clark Glymour, Geoffrey J. Gordon, Barbara H. Hanusa, Janine E. Janosky, Christopher Meek, Tom M. Mitchell, Thomas S. Richardson, Peter Spirtes:
An evaluation of machine-learning methods for predicting pneumonia mortality. Artif. Intell. Medicine 9(2): 107-138 (1997) - 1996
- [j2]Alberto Maria Segre, Geoffrey J. Gordon, Charles Elkan:
Exploratory Analysis of Speedup Learning Data Using Epectation Maximization. Artif. Intell. 85(1-2): 301-319 (1996) - [c3]Geoffrey J. Gordon, Alberto Maria Segre:
Nonparametric Statistical Methods for Experimental Evaluations of Speedup Learning. ICML 1996: 200-206 - 1995
- [c2]Geoffrey J. Gordon:
Stable Function Approximation in Dynamic Programming. ICML 1995: 261-268 - [c1]Geoffrey J. Gordon:
Stable Fitted Reinforcement Learning. NIPS 1995: 1052-1058 - 1993
- [j1]Alberto Maria Segre, Geoffrey J. Gordon:
Sholom M. Weiss and Casimir A. Kulikowski, Computer Systems That Learn. Artif. Intell. 62(2): 363-378 (1993)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 00:42 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint