default search action
Statistics and Computing, Volume 29
Volume 29, Number 1, January 2019
- Eduardo García-Portugués, Michael Sørensen, Kanti V. Mardia, Thomas Hamelryck:
Langevin diffusions on the torus: estimation and applications. 1-22 - Jingnan Xue, Faming Liang:
Double-Parallel Monte Carlo for Bayesian analysis of big data. 23-32 - Lin Su, Howard D. Bondell:
Best linear estimation via minimization of relative mean squared error. 33-42 - Cinzia Viroli, Geoffrey J. McLachlan:
Deep Gaussian mixture models. 43-51 - Zhijian He, Lingjiong Zhu:
Asymptotic normality of extensible grid sampling. 53-65 - Matthew C. Edwards, Renate Meyer, Nelson Christensen:
Bayesian nonparametric spectral density estimation using B-spline priors. 67-78 - Joshua J. Bon, Kevin Murray, Berwin A. Turlach:
Fitting monotone polynomials in mixed effects models. 79-98 - Michael Schober, Simo Särkkä, Philipp Hennig:
A probabilistic model for the numerical solution of initial value problems. 99-122 - Elmar Spiegel, Thomas Kneib, Fabian Otto-Sobotka:
Generalized additive models with flexible response functions. 123-138 - Eustasio del Barrio, Juan Antonio Cuesta-Albertos, Carlos Matrán, Agustín Mayo-Íscar:
Robust clustering tools based on optimal transportation. 139-160 - Jiaying Gu, Fei Fu, Qing Zhou:
Penalized estimation of directed acyclic graphs from discrete data. 161-176 - Yi-An Ma, Emily B. Fox, Tianqi Chen, Lei Wu:
Irreversible samplers from jump and continuous Markov processes. 177-202
Volume 29, Number 2, March 2019
- Daiane Aparecida Zuanetti, Peter Müller, Yitan Zhu, Shengjie Yang, Yuan Ji:
Bayesian nonparametric clustering for large data sets. 203-215 - Moritz Berger, Gerhard Tutz, Matthias Schmid:
Tree-structured modelling of varying coefficients. 217-229 - Gersende Fort, Edouard Ollier, Adeline Samson:
Stochastic proximal-gradient algorithms for penalized mixed models. 231-253 - Victor Picheny, Rémi Servien, Nathalie Villa-Vialaneix:
Interpretable sparse SIR for functional data. 255-267 - Dominik Müller, Claudia Czado:
Selection of sparse vine copulas in high dimensions with the Lasso. 269-287 - Noboru Nomura:
Orthant probabilities of elliptical distributions from orthogonal projections to subspaces. 289-300 - Alexander Terenin, Shawfeng Dong, David Draper:
GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model. 301-310 - Ruifei Cui, Perry Groot, Tom Heskes:
Learning causal structure from mixed data with missing values using Gaussian copula models. 311-333 - Philip L. H. Yu, Hang Xu:
Rank aggregation using latent-scale distance-based models. 335-349 - Ioulia Papageorgiou, Irini Moustaki:
Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables. 351-365 - Xin Luo, Håkon Tjelmeland:
Prior specification for binary Markov mesh models. 367-389 - David P. Hofmeyr, Nicos G. Pavlidis, Idris A. Eckley:
Minimum spectral connectivity projection pursuit - Divisive clustering using optimal projections for spectral clustering. 391-414
Volume 29, Number 3, May 2019
- Mohsen Maleki, Darren Wraith, Reinaldo Boris Arellano-Valle:
Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions. 415-428 - Andrew G. Salinger, Paul G. Constantine:
Gauss-Christoffel quadrature for inverse regression: applications to computer experiments. 429-447 - Florian Maire, Nial Friel, Pierre Alquier:
Informed sub-sampling MCMC: approximate Bayesian inference for large datasets. 449-482 - María Xosé Rodríguez-Álvarez, María Durbán, Dae-Jin Lee, Paul H. C. Eilers:
On the estimation of variance parameters in non-standard generalised linear mixed models: application to penalised smoothing. 483-500 - Sabrina Guastavino, Federico Benvenuto:
A consistent and numerically efficient variable selection method for sparse Poisson regression with applications to learning and signal recovery. 501-516 - Marina I. Knight, Matthew A. Nunes:
Long memory estimation for complex-valued time series. 517-536 - Shonosuke Sugasawa, Genya Kobayashi, Yuki Kawakubo:
Latent mixture modeling for clustered data. 537-548 - Michael Grabchak:
Rejection sampling for tempered Lévy processes. 549-558 - Antonino Abbruzzo, Ivan Vujacic, Angelo M. Mineo, Ernst C. Wit:
Selecting the tuning parameter in penalized Gaussian graphical models. 559-569 - Junshan Shen, Hanjun Yu, Jin Yang, Catherine Chunling Liu:
Semiparametric Bayesian analysis for longitudinal mixed effects models with non-normal AR(1) errors. 571-583 - Jian Cao, Marc G. Genton, David E. Keyes, George M. Turkiyyah:
Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities. 585-598 - Jack Baker, Paul Fearnhead, Emily B. Fox, Christopher Nemeth:
Control variates for stochastic gradient MCMC. 599-615
Volume 29, Number 4, July 2019
- Andrew J. Black:
Importance sampling for partially observed temporal epidemic models. 617-630 - Daniel W. Heck, Antony M. Overstall, Quentin F. Gronau, Eric-Jan Wagenmakers:
Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models. 631-643 - Minwoo Chae, Ryan Martin, Stephen G. Walker:
On an algorithm for solving Fredholm integrals of the first kind. 645-654 - Andrés M. Alonso, Daniel Peña:
Clustering time series by linear dependency. 655-676 - Marco Corneli, Charles Bouveyron, Pierre Latouche, Fabrice Rossi:
The dynamic stochastic topic block model for dynamic networks with textual edges. 677-695 - Colin S. Gillespie, Richard J. Boys:
Efficient construction of Bayes optimal designs for stochastic process models. 697-706 - Michiel Debruyne, Sebastiaan Höppner, Sven Serneels, Tim Verdonck:
Outlyingness: Which variables contribute most? 707-723 - Yuguang Yue, Lieven Vandenberghe, Weng Kee Wong:
T-optimal designs for multi-factor polynomial regression models via a semidefinite relaxation method. 725-738 - Michael B. Giles, Takashi Goda:
Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI. 739-751 - Marcelo Hartmann, Jarno Vanhatalo:
Laplace approximation and natural gradient for Gaussian process regression with heteroscedastic student-t model. 753-773 - Ajay Jasra, Kody J. H. Law, Prince Peprah Osei:
Multilevel particle filters for Lévy-driven stochastic differential equations. 775-789 - Michael Fop, Thomas Brendan Murphy, Luca Scrucca:
Model-based clustering with sparse covariance matrices. 791-819 - Sigrunn Holbek Sørbye, Eirik Myrvoll-Nilsen, Håvard Rue:
An approximate fractional Gaussian noise model with $$\mathcal {O}(n)$$ O ( n ) computational cost. 821-833 - Xi Chen, Michael P. Hobson, Saptarshi Das, Paul Gelderblom:
Improving the efficiency and robustness of nested sampling using posterior repartitioning. 835-850 - Ajay Jasra, Kody J. H. Law, Prince Peprah Osei:
Correction to: Multilevel particle filters for Lévy-driven stochastic differential equations. 851
Volume 29, Number 5, September 2019
- Benn Macdonald, Dirk Husmeier:
Model selection via marginal likelihood estimation by combining thermodynamic integration and gradient matching. 853-867 - Javier Espinosa, Christian Hennig:
A constrained regression model for an ordinal response with ordinal predictors. 869-890 - Edward Higson, Will Handley, Michael P. Hobson, Anthony N. Lasenby:
Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. 891-913 - Aleksandar A. Kolev, Gordon J. Ross:
Inference for ETAS models with non-Poissonian mainshock arrival times. 915-931 - David Gunawan, Minh-Ngoc Tran, Kosuke Suzuki, Josef Dick, Robert Kohn:
Computationally efficient Bayesian estimation of high-dimensional Archimedean copulas with discrete and mixed margins. 933-946 - Sinan Yildirim, Beyza Ermis:
Exact MCMC with differentially private moves - Revisiting the penalty algorithm in a data privacy framework. 947-963 - Øyvind Langsrud:
Information preserving regression-based tools for statistical disclosure control. 965-976 - Ruifei Cui, Ioan Gabriel Bucur, Perry Groot, Tom Heskes:
A novel Bayesian approach for latent variable modeling from mixed data with missing values. 977-993 - M. Mehdi Moradi, Ottmar Cronie, Ege Rubak, Raphaël Lachièze-Rey, Jorge Mateu, Adrian J. Baddeley:
Resample-smoothing of Voronoi intensity estimators. 995-1010 - Elizabeth Ann Maharaj, Paulo Teles, Paula Brito:
Clustering of interval time series. 1011-1034 - Hiroshi Yamashita, Hideyuki Suzuki:
Convergence analysis of herded-Gibbs-type sampling algorithms: effects of weight sharing. 1035-1053 - Augustin Touron:
Consistency of the maximum likelihood estimator in seasonal hidden Markov models. 1055-1075 - Matthew Heiner, Athanasios Kottas, Stephan Munch:
Structured priors for sparse probability vectors with application to model selection in Markov chains. 1077-1093 - Marco Scutari, Claudia Vitolo, Allan Tucker:
Learning Bayesian networks from big data with greedy search: computational complexity and efficient implementation. 1095-1108 - Joshua Plasse, Niall M. Adams:
Multiple changepoint detection in categorical data streams. 1109-1125 - Maria Lomeli, Mark Rowland, Arthur Gretton, Zoubin Ghahramani:
Antithetic and Monte Carlo kernel estimators for partial rankings. 1127-1147 - Andrew Golightly, Chris Sherlock:
Efficient sampling of conditioned Markov jump processes. 1149-1163 - Miaoqi Li, Emily Lei Kang:
Randomized algorithms of maximum likelihood estimation with spatial autoregressive models for large-scale networks. 1165-1179
Volume 29, Number 6, November 2019
- Mark A. Girolami, Ilse C. F. Ipsen, Chris J. Oates, Art B. Owen, Timothy John Sullivan:
Editorial: special edition on probabilistic numerics. 1181-1183 - Gene Ryan Yoo, Houman Owhadi:
De-noising by thresholding operator adapted wavelets. 1185-1201 - Martin Ehler, Manuel Gräf, Chris J. Oates:
Optimal Monte Carlo integration on closed manifolds. 1203-1214 - R. Jagadeeswaran, Fred J. Hickernell:
Fast automatic Bayesian cubature using lattice sampling. 1215-1229 - Toni Karvonen, Simo Särkkä, Chris J. Oates:
Symmetry exploits for Bayesian cubature methods. 1231-1248 - Simon Bartels, Jon Cockayne, Ilse C. F. Ipsen, Philipp Hennig:
Probabilistic linear solvers: a unifying view. 1249-1263 - Han Cheng Lie, Andrew M. Stuart, Timothy John Sullivan:
Strong convergence rates of probabilistic integrators for ordinary differential equations. 1265-1283 - Oksana A. Chkrebtii, David A. Campbell:
Adaptive step-size selection for state-space probabilistic differential equation solvers. 1285-1295 - Filip Tronarp, Hans Kersting, Simo Särkkä, Philipp Hennig:
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective. 1297-1315 - Toni Karvonen, Motonobu Kanagawa, Simo Särkkä:
On the positivity and magnitudes of Bayesian quadrature weights. 1317-1333 - Chris J. Oates, Timothy John Sullivan:
A modern retrospective on probabilistic numerics. 1335-1351
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.