default search action
Shandian Zhe
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [c60]Yingjing Wu, Ahmed Elmokashfi, Foivos Michelinakis, Jacobus E. van der Merwe, Shandian Zhe:
ADDER: Service-Specific Adaptive Data-Driven Radio Resource Control for Cellular-IoT. WoWMoM 2025: 157-166 - 2024
- [j15]Hongsup Oh, Roman Amici, Geoffrey F. Bomarito, Shandian Zhe, Robert M. Kirby, Jacob D. Hochhalter:
Inherently interpretable machine learning solutions to differential equations. Eng. Comput. 40(4): 2349-2361 (2024) - [c59]Da Long, Wei W. Xing, Aditi S. Krishnapriyan, Robert M. Kirby, Shandian Zhe, Michael W. Mahoney:
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels. AISTATS 2024: 2413-2421 - [c58]Shibo Li, Xin Yu, Wei W. Xing, Robert M. Kirby, Akil Narayan, Shandian Zhe:
Multi-Resolution Active Learning of Fourier Neural Operators. AISTATS 2024: 2440-2448 - [c57]Shikai Fang, Xin Yu, Zheng Wang, Shibo Li, Mike Kirby, Shandian Zhe:
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data. ICLR 2024 - [c56]Shikai Fang, Madison Cooley, Da Long, Shibo Li, Mike Kirby, Shandian Zhe:
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes. ICLR 2024 - [c55]Shikai Fang, Qingsong Wen, Yingtao Luo, Shandian Zhe, Liang Sun:
BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition. ICML 2024 - [i53]Zhitong Xu, Shandian Zhe:
Standard Gaussian Process is All You Need for High-Dimensional Bayesian Optimization. CoRR abs/2402.02746 (2024) - [i52]Da Long, Shandian Zhe:
Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems. CoRR abs/2402.11722 (2024) - [i51]Yutao Feng, Yintong Shang, Xiang Feng, Lei Lan, Shandian Zhe, Tianjia Shao, Hongzhi Wu, Kun Zhou, Hao Su, Chenfanfu Jiang, Yin Yang:
ElastoGen: 4D Generative Elastodynamics. CoRR abs/2405.15056 (2024) - [i50]Madison Cooley, Shandian Zhe, Robert M. Kirby, Varun Shankar:
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation. CoRR abs/2406.02336 (2024) - [i49]Zachary Bastiani, Robert M. Kirby, Jacob D. Hochhalter, Shandian Zhe:
Complexity-Aware Deep Symbolic Regression with Robust Risk-Seeking Policy Gradients. CoRR abs/2406.06751 (2024) - [i48]Matthew Lowery, John Turnage, Zachary Morrow, John D. Jakeman, Akil Narayan, Shandian Zhe, Varun Shankar:
Kernel Neural Operators (KNOs) for Scalable, Memory-efficient, Geometrically-flexible Operator Learning. CoRR abs/2407.00809 (2024) - [i47]Madison Cooley, Varun Shankar, Robert M. Kirby, Shandian Zhe:
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases. CoRR abs/2410.03496 (2024) - [i46]Madison Cooley, Robert M. Kirby, Shandian Zhe, Varun Shankar:
HyResPINNs: Adaptive Hybrid Residual Networks for Learning Optimal Combinations of Neural and RBF Components for Physics-Informed Modeling. CoRR abs/2410.03573 (2024) - [i45]Zhitong Xu, Da Long, Yiming Xu, Guang Yang, Shandian Zhe, Houman Owhadi:
Toward Efficient Kernel-Based Solvers for Nonlinear PDEs. CoRR abs/2410.11165 (2024) - [i44]Da Long, Zhitong Xu, Guang Yang, Akil Narayan, Shandian Zhe:
Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation. CoRR abs/2410.13794 (2024) - 2023
- [j14]Michael Penwarden, Shandian Zhe, Akil Narayan, Robert M. Kirby:
A metalearning approach for Physics-Informed Neural Networks (PINNs): Application to parameterized PDEs. J. Comput. Phys. 477: 111912 (2023) - [j13]Michael Penwarden, Ameya D. Jagtap, Shandian Zhe, George Em Karniadakis, Robert M. Kirby:
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions. J. Comput. Phys. 493: 112464 (2023) - [c54]Shibo Li, Zheng Wang, Akil Narayan, Robert M. Kirby, Shandian Zhe:
Meta-Learning with Adjoint Methods. AISTATS 2023: 7239-7251 - [c53]Junyang Cai, Khai-Nguyen Nguyen, Nishant Shrestha, Aidan Good, Ruisen Tu, Xin Yu, Shandian Zhe, Thiago Serra:
Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions. CPAIOR 2023: 200-218 - [c52]Yu Chen, Wei Deng, Shikai Fang, Fengpei Li, Nicole Tianjiao Yang, Yikai Zhang, Kashif Rasul, Shandian Zhe, Anderson Schneider, Yuriy Nevmyvaka:
Provably Convergent Schrödinger Bridge with Applications to Probabilistic Time Series Imputation. ICML 2023: 4485-4513 - [c51]Shibo Li, Michael Penwarden, Yiming Xu, Conor Tillinghast, Akil Narayan, Mike Kirby, Shandian Zhe:
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks. ICML 2023: 19855-19881 - [c50]Shikai Fang, Xin Yu, Shibo Li, Zheng Wang, Mike Kirby, Shandian Zhe:
Streaming Factor Trajectory Learning for Temporal Tensor Decomposition. NeurIPS 2023 - [c49]Zheng Wang, Shikai Fang, Shibo Li, Shandian Zhe:
Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes. NeurIPS 2023 - [i43]Junyang Cai, Khai-Nguyen Nguyen, Nishant Shrestha, Aidan Good, Ruisen Tu, Xin Yu, Shandian Zhe, Thiago Serra:
Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions. CoRR abs/2301.07966 (2023) - [i42]Hongsup Oh, Roman Amici, Geoffrey F. Bomarito, Shandian Zhe, Robert M. Kirby, Jacob D. Hochhalter:
Genetic Programming Based Symbolic Regression for Analytical Solutions to Differential Equations. CoRR abs/2302.03175 (2023) - [i41]Michael Penwarden, Ameya D. Jagtap, Shandian Zhe, George Em Karniadakis, Robert M. Kirby:
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions. CoRR abs/2302.14227 (2023) - [i40]Yu Chen, Wei Deng, Shikai Fang, Fengpei Li, Nicole Tianjiao Yang, Yikai Zhang, Kashif Rasul, Shandian Zhe, Anderson Schneider, Yuriy Nevmyvaka:
Provably Convergent Schrödinger Bridge with Applications to Probabilistic Time Series Imputation. CoRR abs/2305.07247 (2023) - [i39]Shikai Fang, Qingsong Wen, Shandian Zhe, Liang Sun:
BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition. CoRR abs/2308.14906 (2023) - [i38]Shibo Li, Xin Yu, Wei W. Xing, Mike Kirby, Akil Narayan, Shandian Zhe:
Multi-Resolution Active Learning of Fourier Neural Operators. CoRR abs/2309.16971 (2023) - [i37]Da Long, Wei W. Xing, Aditi S. Krishnapriyan, Robert M. Kirby, Shandian Zhe, Michael W. Mahoney:
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels. CoRR abs/2310.05387 (2023) - [i36]Shikai Fang, Xin Yu, Shibo Li, Zheng Wang, Robert M. Kirby, Shandian Zhe:
Streaming Factor Trajectory Learning for Temporal Tensor Decomposition. CoRR abs/2310.17021 (2023) - [i35]Zheng Wang, Shikai Fang, Shibo Li, Shandian Zhe:
Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes. CoRR abs/2310.19666 (2023) - [i34]Shikai Fang, Madison Cooley, Da Long, Shibo Li, Robert M. Kirby, Shandian Zhe:
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes. CoRR abs/2311.04465 (2023) - [i33]Shikai Fang, Xin Yu, Zheng Wang, Shibo Li, Mike Kirby, Shandian Zhe:
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data. CoRR abs/2311.04829 (2023) - [i32]Zheng Wang, Shibo Li, Shikai Fang, Shandian Zhe:
Diffusion-Generative Multi-Fidelity Learning for Physical Simulation. CoRR abs/2311.05606 (2023) - 2022
- [j12]Michael Penwarden, Shandian Zhe, Akil Narayan, Robert M. Kirby:
Multifidelity modeling for Physics-Informed Neural Networks (PINNs). J. Comput. Phys. 451: 110844 (2022) - [c48]Zheng Wang, Wei W. Xing, Robert M. Kirby, Shandian Zhe:
Physics Informed Deep Kernel Learning. AISTATS 2022: 1206-1218 - [c47]Shibo Li, Zheng Wang, Robert M. Kirby, Shandian Zhe:
Deep Multi-Fidelity Active Learning of High-Dimensional Outputs. AISTATS 2022: 1694-1711 - [c46]Shikai Fang, Akil Narayan, Robert M. Kirby, Shandian Zhe:
Bayesian Continuous-Time Tucker Decomposition. ICML 2022: 6235-6245 - [c45]Shibo Li, Robert M. Kirby, Shandian Zhe:
Decomposing Temporal High-Order Interactions via Latent ODEs. ICML 2022: 12797-12812 - [c44]Da Long, Zheng Wang, Aditi S. Krishnapriyan, Robert M. Kirby, Shandian Zhe, Michael W. Mahoney:
AutoIP: A United Framework to Integrate Physics into Gaussian Processes. ICML 2022: 14210-14222 - [c43]Conor Tillinghast, Zheng Wang, Shandian Zhe:
Nonparametric Sparse Tensor Factorization with Hierarchical Gamma Processes. ICML 2022: 21432-21448 - [c42]Zheng Wang, Yiming Xu, Conor Tillinghast, Shibo Li, Akil Narayan, Shandian Zhe:
Nonparametric Embeddings of Sparse High-Order Interaction Events. ICML 2022: 23237-23253 - [c41]Zheng Wang, Shandian Zhe:
Nonparametric Factor Trajectory Learning for Dynamic Tensor Decomposition. ICML 2022: 23459-23469 - [c40]Xin Yu, Thiago Serra, Srikumar Ramalingam, Shandian Zhe:
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks. ICML 2022: 25668-25683 - [c39]Aidan Good, Jiaqi Lin, Xin Yu, Hannah Sieg, Mikey Ferguson, Shandian Zhe, Jerzy Wieczorek, Thiago Serra:
Recall Distortion in Neural Network Pruning and the Undecayed Pruning Algorithm. NeurIPS 2022 - [c38]Shibo Li, Zheng Wang, Robert M. Kirby, Shandian Zhe:
Infinite-Fidelity Coregionalization for Physical Simulation. NeurIPS 2022 - [c37]Shibo Li, Jeff M. Phillips, Xin Yu, Robert M. Kirby, Shandian Zhe:
Batch Multi-Fidelity Active Learning with Budget Constraints. NeurIPS 2022 - [i31]Vahid Keshavarzzadeh, Shandian Zhe, Robert M. Kirby, Akil Narayan:
GP-HMAT: Scalable, O(n log(n)) Gaussian Process Regression with Hierarchical Low-Rank Matrices. CoRR abs/2201.00888 (2022) - [i30]Da Long, Zheng Wang, Aditi S. Krishnapriyan, Robert M. Kirby, Shandian Zhe, Michael W. Mahoney:
AutoIP: A United Framework to Integrate Physics into Gaussian Processes. CoRR abs/2202.12316 (2022) - [i29]Xin Yu, Thiago Serra, Srikumar Ramalingam, Shandian Zhe:
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks. CoRR abs/2203.04466 (2022) - [i28]Aidan Good, Jiaqi Lin, Hannah Sieg, Mikey Ferguson, Xin Yu, Shandian Zhe, Jerzy Wieczorek, Thiago Serra:
Recall Distortion in Neural Network Pruning and the Undecayed Pruning Algorithm. CoRR abs/2206.02976 (2022) - [i27]Shibo Li, Zheng Wang, Robert M. Kirby, Shandian Zhe:
Infinite-Fidelity Coregionalization for Physical Simulation. CoRR abs/2207.00678 (2022) - [i26]Zheng Wang, Shandian Zhe:
Nonparametric Factor Trajectory Learning for Dynamic Tensor Decomposition. CoRR abs/2207.02446 (2022) - [i25]Zheng Wang, Yiming Xu, Conor Tillinghast, Shibo Li, Akil Narayan, Shandian Zhe:
Nonparametric Embeddings of Sparse High-Order Interaction Events. CoRR abs/2207.03639 (2022) - [i24]Da Long, Nicole Mrvaljevic, Shandian Zhe, Bamdad Hosseini:
A Kernel Approach for PDE Discovery and Operator Learning. CoRR abs/2210.08140 (2022) - [i23]Shibo Li, Michael Penwarden, Robert M. Kirby, Shandian Zhe:
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks. CoRR abs/2210.12669 (2022) - [i22]Shibo Li, Jeff M. Phillips, Xin Yu, Robert M. Kirby, Shandian Zhe:
Batch Multi-Fidelity Active Learning with Budget Constraints. CoRR abs/2210.12704 (2022) - 2021
- [j11]Wei W. Xing, Robert M. Kirby, Shandian Zhe:
Deep coregionalization for the emulation of simulation-based spatial-temporal fields. J. Comput. Phys. 428: 109984 (2021) - [c36]Zheng Wang, Wei W. Xing, Robert Michael Kirby, Shandian Zhe:
Multi-Fidelity High-Order Gaussian Processes for Physical Simulation. AISTATS 2021: 847-855 - [c35]Shikai Fang, Zheng Wang, Zhimeng Pan, Ji Liu, Shandian Zhe:
Streaming Bayesian Deep Tensor Factorization. ICML 2021: 3133-3142 - [c34]Conor Tillinghast, Shandian Zhe:
Nonparametric Decomposition of Sparse Tensors. ICML 2021: 10301-10311 - [c33]Zhimeng Pan, Zheng Wang, Jeff M. Phillips, Shandian Zhe:
Self-Adaptable Point Processes with Nonparametric Time Decays. NeurIPS 2021: 4594-4606 - [c32]Shibo Li, Robert M. Kirby, Shandian Zhe:
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks. NeurIPS 2021: 25463-25475 - [c31]Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney:
Characterizing possible failure modes in physics-informed neural networks. NeurIPS 2021: 26548-26560 - [c30]Shikai Fang, Robert M. Kirby, Shandian Zhe:
Bayesian streaming sparse Tucker decomposition. UAI 2021: 558-567 - [i21]Wei W. Xing, Akeel A. Shah, Peng Wang, Shandian Zhe, Qian Fu, Robert M. Kirby:
Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator for Multi-fidelity Simulations. CoRR abs/2104.03743 (2021) - [i20]Shibo Li, Robert M. Kirby, Shandian Zhe:
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks. CoRR abs/2106.09884 (2021) - [i19]Michael Penwarden, Shandian Zhe, Akil Narayan, Robert M. Kirby:
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs). CoRR abs/2106.13361 (2021) - [i18]Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney:
Characterizing possible failure modes in physics-informed neural networks. CoRR abs/2109.01050 (2021) - [i17]Shibo Li, Zheng Wang, Akil Narayan, Robert Michael Kirby, Shandian Zhe:
Meta-Learning with Adjoint Methods. CoRR abs/2110.08432 (2021) - [i16]Conor Tillinghast, Zheng Wang, Shandian Zhe:
Nonparametric Sparse Tensor Factorization with Hierarchical Gamma Processes. CoRR abs/2110.10082 (2021) - [i15]Michael Penwarden, Shandian Zhe, Akil Narayan, Robert M. Kirby:
Physics-Informed Neural Networks (PINNs) for Parameterized PDEs: A Metalearning Approach. CoRR abs/2110.13361 (2021) - 2020
- [j10]Yunjun Xiao, Jia Wei, Jiabing Wang, Qianli Ma, Shandian Zhe, Tolga Tasdizen:
Graph constraint-based robust latent space low-rank and sparse subspace clustering. Neural Comput. Appl. 32(12): 8187-8204 (2020) - [j9]Jinmian Ye, Guangxi Li, Di Chen, Haiqin Yang, Shandian Zhe, Zenglin Xu:
Block-term tensor neural networks. Neural Networks 130: 11-21 (2020) - [c29]Wei W. Xing, Shireen Y. Elhabian, Robert Michael Kirby, Ross T. Whitaker, Shandian Zhe:
Infinite ShapeOdds: Nonparametric Bayesian Models for Shape Representations. AAAI 2020: 6462-6469 - [c28]Zhimeng Pan, Zheng Wang, Shandian Zhe:
Scalable Nonparametric Factorization for High-Order Interaction Events. AISTATS 2020: 4325-4335 - [c27]Shikai Fang, Shandian Zhe, Kuang-chih Lee, Kai Zhang, Jennifer Neville:
Online Bayesian Sparse Learning with Spike and Slab Priors. ICDM 2020: 142-151 - [c26]Conor Tillinghast, Shikai Fang, Kai Zhang, Shandian Zhe:
Probabilistic Neural-Kernel Tensor Decomposition. ICDM 2020: 531-540 - [c25]Zheng Wang, Xinqi Chu, Shandian Zhe:
Self-Modulating Nonparametric Event-Tensor Factorization. ICML 2020: 9857-9867 - [c24]Shibo Li, Wei W. Xing, Robert M. Kirby, Shandian Zhe:
Scalable Gaussian Process Regression Networks. IJCAI 2020: 2456-2462 - [c23]Juefei Yuan, Tianyang Wang, Shandian Zhe, Yijuan Lu, Bo Li:
Semantic Tree-Based 3D Scene Model Recognition. MIPR 2020: 85-90 - [c22]Shibo Li, Wei W. Xing, Robert M. Kirby, Shandian Zhe:
Multi-Fidelity Bayesian Optimization via Deep Neural Networks. NeurIPS 2020 - [c21]Zhimeng Pan, Zheng Wang, Shandian Zhe:
Streaming Nonlinear Bayesian Tensor Decomposition. UAI 2020: 490-499 - [i14]Yun Yuan, Xianfeng Terry Yang, Zhao Zhang, Shandian Zhe:
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications. CoRR abs/2002.02374 (2020) - [i13]Shibo Li, Wei W. Xing, Mike Kirby, Shandian Zhe:
Scalable Variational Gaussian Process Regression Networks. CoRR abs/2003.11489 (2020) - [i12]Zheng Wang, Wei W. Xing, Robert Michael Kirby, Shandian Zhe:
Multi-Fidelity High-Order Gaussian Processes for Physical Simulation. CoRR abs/2006.04972 (2020) - [i11]Zheng Wang, Wei W. Xing, Robert Michael Kirby, Shandian Zhe:
Physics Regularized Gaussian Processes. CoRR abs/2006.04976 (2020) - [i10]Shibo Li, Wei W. Xing, Mike Kirby, Shandian Zhe:
Multi-Fidelity Bayesian Optimization via Deep Neural Networks. CoRR abs/2007.03117 (2020) - [i9]Shikai Fang, Zheng Wang, Zhimeng Pan, Ji Liu, Shandian Zhe:
Streaming Probabilistic Deep Tensor Factorization. CoRR abs/2007.07367 (2020) - [i8]Jinmian Ye, Guangxi Li, Di Chen, Haiqin Yang, Shandian Zhe, Zenglin Xu:
Block-term Tensor Neural Networks. CoRR abs/2010.04963 (2020) - [i7]Shibo Li, Robert M. Kirby, Shandian Zhe:
Deep Multi-Fidelity Active Learning of High-dimensional Outputs. CoRR abs/2012.00901 (2020)
2010 – 2019
- 2019
- [j8]Zenglin Xu, Bin Liu, Shandian Zhe, Haoli Bai, Zihan Wang, Jennifer Neville:
Variational Random Function Model for Network Modeling. IEEE Trans. Neural Networks Learn. Syst. 30(1): 318-324 (2019) - [j7]Liang Lan, Zhuang Wang, Shandian Zhe, Wei Cheng, Jun Wang, Kai Zhang:
Scaling Up Kernel SVM on Limited Resources: A Low-Rank Linearization Approach. IEEE Trans. Neural Networks Learn. Syst. 30(2): 369-378 (2019) - [c20]Shandian Zhe, Wei W. Xing, Robert M. Kirby:
Scalable High-Order Gaussian Process Regression. AISTATS 2019: 2611-2620 - [c19]Zheng Wang, Shandian Zhe:
Conditional Expectation Propagation. UAI 2019: 28-37 - [i6]Wei W. Xing, Robert M. Kirby, Shandian Zhe:
Deep Coregionalization for the Emulation of Spatial-Temporal Fields. CoRR abs/1910.07577 (2019) - [i5]Zheng Wang, Shandian Zhe:
Conditional Expectation Propagation. CoRR abs/1910.12360 (2019) - 2018
- [j6]Bin Liu, Lirong He, Yingming Li, Shandian Zhe, Zenglin Xu:
NeuralCP: Bayesian Multiway Data Analysis with Neural Tensor Decomposition. Cogn. Comput. 10(6): 1051-1061 (2018) - [c18]Lianjie Cao, Sonia Fahmy, Puneet Sharma, Shandian Zhe:
Data-driven resource flexing for network functions visualization. ANCS 2018: 111-124 - [c17]Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, Zenglin Xu:
Learning Compact Recurrent Neural Networks With Block-Term Tensor Decomposition. CVPR 2018: 9378-9387 - [c16]Yishuai Du, Yimin Zheng, Kuang-chih Lee, Shandian Zhe:
Probabilistic Streaming Tensor Decomposition. ICDM 2018: 99-108 - [c15]Shandian Zhe, Yishuai Du:
Stochastic Nonparametric Event-Tensor Decomposition. NeurIPS 2018: 6857-6867 - 2017
- [b1]Shandian Zhe:
Scalable Bayesian Nonparametrics and Sparse Learning for Hidden Relationship Discovery. Purdue University, USA, 2017 - [j5]Hao Peng, Yifan Yang, Shandian Zhe, Jian Wang, Michael Gribskov, Yuan Qi:
DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates. Bioinform. 33(19): 3018-3027 (2017) - [c14]Shandian Zhe:
Scalable Nonparametric Tensor Analysis. AAAI 2017: 5058-5060 - [c13]Hao Peng, Shandian Zhe, Xiao Zhang, Yuan Qi:
Asynchronous Distributed Variational Gaussian Process for Regression. ICML 2017: 2788-2797 - [c12]Bin Liu, Zenglin Xu, Bo Dai, Haoli Bai, Xianghong Fang, Yazhou Ren, Shandian Zhe:
Learning from semantically dependent multi-tasks. IJCNN 2017: 3498-3505 - [i4]Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, Zenglin Xu:
Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition. CoRR abs/1712.05134 (2017) - 2016
- [j4]Mohammad Adnan Rajib, Venkatesh M. Merwade, I Luk Kim, Lan Zhao, Carol X. Song, Shandian Zhe:
SWATShare - A web platform for collaborative research and education through online sharing, simulation and visualization of SWAT models. Environ. Model. Softw. 75: 498-512 (2016) - [j3]Zenglin Xu, Shandian Zhe, Yuan Qi, Peng Yu:
Association Discovery and Diagnosis of Alzheimer's Disease with Bayesian Multiview Learning. J. Artif. Intell. Res. 56: 247-268 (2016) - [c11]Shandian Zhe, Yuan Qi, Youngja Park, Zenglin Xu, Ian M. Molloy, Suresh Chari:
DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays. AAAI 2016: 2386-2392 - [c10]Syed Abbas Zilqurnain Naqvi, Shandian Zhe, Yuan Qi, Yifan Yang, Jieping Ye:
Fast Laplace Approximation for Sparse Bayesian Spike and Slab Models. IJCAI 2016: 1867-1973 - [c9]Kai Zhang, Shandian Zhe, Chaoran Cheng, Zhi Wei, Zhengzhang Chen, Haifeng Chen, Guofei Jiang, Yuan Qi, Jieping Ye:
Annealed Sparsity via Adaptive and Dynamic Shrinking. KDD 2016: 1325-1334 - [c8]Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Yuan Qi, Zoubin Ghahramani:
Distributed Flexible Nonlinear Tensor Factorization. NIPS 2016: 920-928 - [c7]Changde Du, Changying Du, Shandian Zhe, Ali Luo, Qing He, Guoping Long:
Bayesian Group Feature Selection for Support Vector Learning Machines. PAKDD (1) 2016: 239-252 - [i3]Shandian Zhe, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Jian Yang, Youngja Park, Yuan Qi:
Distributed Flexible Nonlinear Tensor Factorization. CoRR abs/1604.07928 (2016) - 2015
- [c6]Shandian Zhe, Zenglin Xu, Yuan Qi, Peng Yu:
Sparse Bayesian Multiview Learning for Simultaneous Association Discovery and Diagnosis of Alzheimer's Disease. AAAI 2015: 1966-1972 - [c5]Changying Du, Shandian Zhe, Fuzhen Zhuang, Yuan Qi, Qing He, Zhongzhi Shi:
Bayesian Maximum Margin Principal Component Analysis. AAAI 2015: 2582-2588 - [c4]Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan (Alan) Qi, Youngja Park:
Scalable Nonparametric Multiway Data Analysis. AISTATS 2015 - 2014
- [c3]Shandian Zhe, Zenglin Xu, Yuan Qi, Peng Yu:
Joint Association Discovery and Diagnosis of Alzheimer's Disease by Supervised Heterogeneous Multiview Learning. Pacific Symposium on Biocomputing 2014: 300-311 - 2013
- [j2]Shandian Zhe, Syed A. Z. Naqvi, Yifan Yang, Yuan Qi:
Joint network and node selection for pathway-based genomic data analysis. Bioinform. 29(16): 1987-1996 (2013) - [i2]Shandian Zhe, Zenglin Xu, Yuan Qi, Peng Yu:
Supervised Heterogeneous Multiview Learning for Joint Association Study and Disease Diagnosis. CoRR abs/1304.7284 (2013) - [i1]Shandian Zhe, Yuan Qi, Youngja Park, Ian M. Molloy, Suresh Chari:
DinTucker: Scaling up Gaussian process models on multidimensional arrays with billions of elements. CoRR abs/1311.2663 (2013) - 2011
- [j1]Tian Xia, Shandian Zhe, Jinsong Su, Qun Liu:
Conditional Random Fields for Machine Translation System Combination. Int. J. Asian Lang. Process. 21(3): 83-94 (2011) - 2010
- [c2]Tian Xia, Shandian Zhe, Qun Liu:
Conditional Random Fields for Machine Translation System Combination. IALP 2010: 237-240 - [c1]Shandian Zhe, Tian Xia, Xueqi Cheng:
Modeling Users' Information Goal Transitions and Satisfaction Judgment: Understanding the Full Search Process. Web Intelligence 2010: 431-434
Coauthor Index
aka: Yuan (Alan) Qi
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:12 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint