default search action
Miguel Ángel Hernández-Verón
Person information
- affiliation: University of La Rioja, Department of Mathematics and Computer Science, Spain
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j98]J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán, Alejandro Moysi:
On the existence and the approximation of solutions of Volterra integral equations of the second kind. Appl. Math. Comput. 478: 128829 (2024) - [j97]J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán, Alejandro Moysi:
A procedure to obtain quadratic convergence from the secant method. J. Comput. Appl. Math. 448: 115912 (2024) - [j96]Miguel Ángel Hernández-Verón, Sukhjit Singh, Eulalia Martínez, Nisha Yadav:
A fixed-Point Type Result for some non-differentiable Fredholm integral equations. Math. Model. Anal. 29(1): 161-177 (2024) - [j95]M. A. Hernández-Verón, Ángel Alberto Magreñán, Eulalia Martínez, Eva G. Villalba:
Solving non-differentiable Hammerstein integral equations via first-order divided differences. Numer. Algorithms 97(2): 567-594 (2024) - 2023
- [j94]Sonia Yadav, Sukhjit Singh, M. A. Hernández-Verón, Eulalia Martínez, Ajay Kumar, R. P. Badoni:
About the existence and uniqueness of solutions for some second-order nonlinear BVPs. Appl. Math. Comput. 457: 128218 (2023) - [j93]J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán, Alejandro Moysi:
A significant improvement of a family of secant-type methods. J. Comput. Appl. Math. 424: 115002 (2023) - [j92]M. A. Hernández-Verón, Nisha Yadav, Eulalia Martínez, Sukhjit Singh:
Kurchatov-type methods for non-differentiable Hammerstein-type integral equations. Numer. Algorithms 93(1): 131-155 (2023) - 2022
- [j91]M. A. Hernández-Verón, Eulalia Martínez, Sukhjit Singh:
A reliable treatment to solve nonlinear Fredholm integral equations with non-separable kernel. J. Comput. Appl. Math. 404: 113115 (2022) - [j90]M. A. Hernández-Verón, Eulalia Martínez:
Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials. J. Comput. Appl. Math. 404: 113391 (2022) - [j89]J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán:
On global convergence for an efficient third-order iterative process. J. Comput. Appl. Math. 404: 113417 (2022) - [j88]M. A. Hernández-Verón, Natalia Romero Álvarez:
An efficient predictor-corrector iterative scheme for solving Wiener-Hopf problems. J. Comput. Appl. Math. 404: 113554 (2022) - [j87]J. A. Ezquerro, M. A. Hernández-Verón:
A new concept of convergence for iterative methods: Restricted global convergence. J. Comput. Appl. Math. 405: 113051 (2022) - [j86]Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Solving Wiener-Hopf problems via an efficient iterative scheme. J. Comput. Appl. Math. 405: 113083 (2022) - [j85]Miguel Ángel Hernández-Verón, Sonia Yadav, Ángel Alberto Magreñán, Eulalia Martínez, Sukhjit Singh:
An Algorithm Derivative-Free to Improve the Steffensen-Type Methods. Symmetry 14(1): 4 (2022) - 2021
- [j84]M. A. Hernández-Verón, Sonia Yadav, Eulalia Martínez, Sukhjit Singh:
Solving nonlinear integral equations with non-separable kernel via a high-order iterative process. Appl. Math. Comput. 409: 126385 (2021) - [j83]José Antonio Ezquerro, Miguel Ángel Hernández-Verón, Ángel Alberto Magreñán:
On an efficient modification of the Chebyshev method. Comput. Math. Methods 3(6) (2021) - [j82]Miguel Ángel Hernández-Verón, Eulalia Martínez, Sukhjit Singh:
On the Chandrasekhar integral equation. Comput. Math. Methods 3(6) (2021) - [j81]José M. Gutiérrez, Miguel Ángel Hernández-Verón:
An Ulm-Type Inverse-Free Iterative Scheme for Fredholm Integral Equations of Second Kind. Symmetry 13(10): 1957 (2021) - 2020
- [j80]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, M. A. Hernández-Verón, Dionisio F. Yáñez:
On the local and semilocal convergence of a parameterized multi-step Newton method. J. Comput. Appl. Math. 376: 112843 (2020)
2010 – 2019
- 2019
- [j79]J. A. Ezquerro, M. A. Hernández-Verón:
Construction of simple majorizing sequences for iterative methods. Appl. Math. Lett. 98: 149-156 (2019) - [j78]J. A. Ezquerro, M. A. Hernández-Verón:
Auxiliary point on the semilocal convergence of Newton's method. J. Comput. Appl. Math. 354: 198-212 (2019) - [j77]José M. Gutiérrez, M. A. Hernández-Verón:
An acceleration of the continuous Newton's method. J. Comput. Appl. Math. 354: 213-220 (2019) - [j76]M. A. Hernández-Verón, Ángel Alberto Magreñán, M. Jóse Rubio:
Dynamics and local convergence of a family of derivative-free iterative processes. J. Comput. Appl. Math. 354: 414-430 (2019) - [j75]J. A. Ezquerro, M. A. Hernández-Verón:
Nonlinear Fredholm integral equations and majorant functions. Numer. Algorithms 82(4): 1303-1323 (2019) - 2018
- [j74]J. A. Ezquerro, M. A. Hernández-Verón:
The majorant principle applied to Hammerstein integral equations. Appl. Math. Lett. 75: 50-58 (2018) - [j73]J. A. Ezquerro, M. A. Hernández-Verón:
Domains of global convergence for Newton's method from auxiliary points. Appl. Math. Lett. 85: 48-56 (2018) - [j72]M. A. Hernández-Verón, Natalia Romero Álvarez:
Existence, localization and approximation of solution of symmetric algebraic Riccati equations. Comput. Math. Appl. 76(1): 187-203 (2018) - [j71]M. A. Hernández-Verón, Eulalia Martínez:
Improving the accessibility of Steffensen's method by decomposition of operators. J. Comput. Appl. Math. 330: 536-552 (2018) - [j70]J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán:
Starting points for Newton's method under a center Lipschitz condition for the second derivative. J. Comput. Appl. Math. 330: 721-731 (2018) - [j69]Ioannis K. Argyros, J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán:
Extending the domain of starting points for Newton's method under conditions on the second derivative. J. Comput. Appl. Math. 340: 1-10 (2018) - [j68]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, M. A. Hernández-Verón, Eulalia Martínez:
On the local convergence study for an efficient k-step iterative method. J. Comput. Appl. Math. 343: 753-761 (2018) - [j67]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, M. A. Hernández-Verón:
On two high-order families of frozen Newton-type methods. Numer. Linear Algebra Appl. 25(1) (2018) - 2017
- [j66]J. A. Ezquerro, M. A. Hernández-Verón:
A study of the influence of center conditions on the domain of parameters of Newton's method by using recurrence relations. Adv. Comput. Math. 43(5): 1103-1129 (2017) - [j65]Sergio Amat, Ioannis K. Argyros, Miguel Ángel Hernández, Natalia Romero Álvarez:
Expanding the Applicability of Some High Order Househölder-Like Methods. Algorithms 10(2): 64 (2017) - [j64]José Antonio Ezquerro, Miguel Ángel Hernández-Verón:
On the Existence of Solutions of Nonlinear Fredholm Integral Equations from Kantorovich's Technique. Algorithms 10(3): 89 (2017) - [j63]M. A. Hernández-Verón, M. Jóse Rubio:
On the local convergence of a Newton-Kurchatov-type method for non-differentiable operators. Appl. Math. Comput. 304: 1-9 (2017) - [j62]Sergio Amat, Sonia Busquier, Miquel Grau-Sánchez, Miguel Ángel Hernández-Verón:
On the Efficiency of a Family of Steffensen-Like Methods with Frozen Divided Differences. Comput. Methods Appl. Math. 17(2): 187 (2017) - [j61]Ioannis K. Argyros, M. A. Hernández-Verón, M. Jóse Rubio:
Convergence of Steffensen's method for non-differentiable operators. Numer. Algorithms 75(1): 229-244 (2017) - [j60]M. A. Hernández-Verón, Eulalia Martínez, Carles Teruel:
Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numer. Algorithms 76(2): 309-331 (2017) - 2016
- [j59]M. A. Hernández-Verón, M. Jóse Rubio:
On the ball of convergence of secant-like methods for non-differentiable operators. Appl. Math. Comput. 273: 506-512 (2016) - [j58]J. A. Ezquerro, M. A. Hernández-Verón:
Enlarging the domain of starting points for Newton's method under center conditions on the first Fréchet-derivative. J. Complex. 33: 89-106 (2016) - [j57]Sergio Amat, Sonia Busquier, J. A. Ezquerro, M. A. Hernández-Verón:
A Steffensen type method of two steps in Banach spaces with applications. J. Comput. Appl. Math. 291: 317-331 (2016) - [j56]Sergio Amat, Concepción Bermúdez, M. A. Hernández-Verón, Eulalia Martínez:
On an efficient k-step iterative method for nonlinear equations. J. Comput. Appl. Math. 302: 258-271 (2016) - 2015
- [j55]José Antonio Ezquerro, Miguel Ángel Hernández-Verón:
On the Accessibility of Newton's Method under a Hölder Condition on the First Derivative. Algorithms 8(3): 514-528 (2015) - [j54]M. A. Hernández-Verón, Natalia Romero Álvarez:
On the Local Convergence of a Third Order Family of Iterative Processes. Algorithms 8(4): 1121-1128 (2015) - [j53]Alicia Cordero, José Antonio Ezquerro, Miguel Ángel Hernández-Verón, Juan R. Torregrosa:
On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251: 396-403 (2015) - [j52]José Antonio Ezquerro, M. A. Hernández-Verón, A. I. Velasco:
An analysis of the semilocal convergence for secant-like methods. Appl. Math. Comput. 266: 883-892 (2015) - [j51]José Antonio Ezquerro, Miguel Ángel Hernández-Verón:
How to improve the domain of parameters for Newton's method. Appl. Math. Lett. 48: 91-101 (2015) - [j50]José Antonio Ezquerro, Miguel Ángel Hernández-Verón:
Center conditions on high order derivatives in the semilocal convergence of Newton's method. J. Complex. 31(2): 277-292 (2015) - [j49]Alicia Cordero, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez, Juan R. Torregrosa:
Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 273: 205-213 (2015) - [j48]Ioannis K. Argyros, Miguel Ángel Hernández-Verón, Saïd Hilout, Natalia Romero Álvarez:
Directional Chebyshev-type methods for solving equations. Math. Comput. 84(292): 815-830 (2015) - [j47]M. A. Hernández-Verón, Eulalia Martínez:
On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions. Numer. Algorithms 70(2): 377-392 (2015) - [j46]J. A. Ezquerro, Miquel Grau-Sánchez, Miguel Ángel Hernández-Verón, Miquel Noguera:
A family of iterative methods that uses divided differences of first and second orders. Numer. Algorithms 70(3): 571-589 (2015) - [j45]Sergio Amat, J. A. Ezquerro, M. A. Hernández-Verón:
On a new family of high-order iterative methods for the matrix pth root. Numer. Linear Algebra Appl. 22(4): 585-595 (2015) - 2014
- [j44]Sergio Amat, Miguel Ángel Hernández-Verón, M. Jóse Rubio:
Improving the applicability of the secant method to solve nonlinear systems of equations. Appl. Math. Comput. 247: 741-752 (2014) - [j43]José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández-Verón:
A semilocal convergence result for Newton's method under generalized conditions of Kantorovich. J. Complex. 30(3): 309-324 (2014) - [j42]J. A. Ezquerro, Miguel Ángel Hernández-Verón, M. Jóse Rubio, A. I. Velasco:
An hybrid method that improves the accessibility of Steffensen's method. Numer. Algorithms 66(2): 241-267 (2014) - [j41]Sergio Amat, José Antonio Ezquerro, Miguel Ángel Hernández-Verón:
Approximation of inverse operators by a new family of high-order iterative methods. Numer. Linear Algebra Appl. 21(5): 629-644 (2014) - [j40]Sergio Amat, Miguel Ángel Hernández, Natalia Romero Álvarez:
On a family of high-order iterative methods under gamma conditions with applications in denoising. Numerische Mathematik 127(2): 201-221 (2014) - 2013
- [j39]J. A. Ezquerro, Daniel González, Miguel Ángel Hernández-Verón:
On the local convergence of Newton's method under generalized conditions of Kantorovich. Appl. Math. Lett. 26(5): 566-570 (2013) - [j38]J. A. Ezquerro, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez, A. I. Velasco:
On Steffensen's method on Banach spaces. J. Comput. Appl. Math. 249: 9-23 (2013) - [j37]J. A. Ezquerro, Daniel González, Miguel Ángel Hernández-Verón:
A modification of the classic conditions of Newton-Kantorovich for Newton's method. Math. Comput. Model. 57(3-4): 584-594 (2013) - [j36]José Antonio Ezquerro, Àngela Grau, Miquel Grau-Sánchez, Miguel Ángel Hernández-Verón:
On the efficiency of two variants of Kurchatov's method for solving nonlinear systems. Numer. Algorithms 64(4): 685-698 (2013) - 2012
- [j35]J. A. Ezquerro, Daniel González, Miguel Ángel Hernández-Verón:
A variant of the Newton-Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type. Appl. Math. Comput. 218(18): 9536-9546 (2012) - [j34]J. A. Ezquerro, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez, A. I. Velasco:
Improving the domain of starting points for secant-like methods. Appl. Math. Comput. 219(8): 3677-3692 (2012) - [j33]J. A. Ezquerro, Àngela Grau, Miquel Grau-Sánchez, Miguel Ángel Hernández-Verón, Miquel Noguera:
Analysing the efficiency of some modifications of the secant method. Comput. Math. Appl. 64(6): 2066-2073 (2012) - [j32]J. A. Ezquerro, Miquel Grau-Sánchez, Miguel Ángel Hernández-Verón:
Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1): 48-58 (2012) - [j31]J. A. Ezquerro, Daniel González, Miguel Ángel Hernández-Verón:
Majorizing sequences for Newton's method from initial value problems. J. Comput. Appl. Math. 236(9): 2246-2258 (2012) - 2011
- [j30]Ioannis K. Argyros, J. A. Ezquerro, José Manuel Gutiérrez Jiménez, Miguel Ángel Hernández-Verón, Saïd Hilout:
On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10): 3195-3206 (2011) - [j29]J. A. Ezquerro, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Solving nonlinear integral equations of Fredholm type with high order iterative methods. J. Comput. Appl. Math. 236(6): 1449-1463 (2011) - [j28]J. A. Ezquerro, Miquel Grau-Sánchez, Àngela Grau, Miguel Ángel Hernández-Verón, Miquel Noguera, Natalia Romero Álvarez:
On Iterative Methods with Accelerated Convergence for Solving Systems of Nonlinear Equations. J. Optim. Theory Appl. 151(1): 163-174 (2011) - 2010
- [j27]J. A. Ezquerro, Miquel Grau-Sánchez, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Variants of a classic Traub's result. Comput. Math. Appl. 60(11): 2899-2908 (2010) - [j26]José Manuel Gutiérrez Jiménez, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233(10): 2688-2695 (2010) - [j25]J. A. Ezquerro, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
An extension of Gander's result for quadratic equations. J. Comput. Appl. Math. 234(4): 960-971 (2010)
2000 – 2009
- 2009
- [j24]J. A. Ezquerro, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Newton-type methods of high order and domains of semilocal and global convergence. Appl. Math. Comput. 214(1): 142-154 (2009) - [j23]Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Toward a unified theory for third R-order iterative methods for operators with unbounded second derivative. Appl. Math. Comput. 215(6): 2248-2261 (2009) - [j22]J. A. Ezquerro, Miguel Ángel Hernández-Verón:
An optimization of Chebyshev's method. J. Complex. 25(4): 343-361 (2009) - [j21]J. A. Ezquerro, Miguel Ángel Hernández-Verón:
An improvement of the region of accessibility of Chebyshev's method from Newton's method. Math. Comput. 78(267): 1613-1627 (2009) - 2008
- [j20]Sergio Amat, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
A modified Chebyshev's iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1): 164-174 (2008) - [j19]José Manuel Gutiérrez Jiménez, Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
A note on a modification of Moser's method. J. Complex. 24(2): 185-197 (2008) - [j18]José Antonio Ezquerro, Miguel Ángel Hernández:
The Ulm method under mild differentiability conditions. Numerische Mathematik 109(2): 193-207 (2008) - 2007
- [j17]Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Application of iterative processes of R-order at least three to operators with unbounded second derivative. Appl. Math. Comput. 185(1): 737-747 (2007) - [j16]Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
Methods with prefixed order for approximating square roots with global and general convergence. Appl. Math. Comput. 194(2): 346-353 (2007) - [j15]J. A. Ezquerro, Miguel Ángel Hernández-Verón:
A generalization of the Kantorovich type assumptions for Halley's method. Int. J. Comput. Math. 84(12): 1771-1779 (2007) - [j14]Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
On the efficiency index of one-point iterative processes. Numer. Algorithms 46(1): 35-44 (2007) - 2005
- [j13]Miguel Ángel Hernández-Verón, M. Jóse Rubio, J. A. Ezquerro:
Solving a special case of conservative problems by Secant-like methods. Appl. Math. Comput. 169(2): 926-942 (2005) - 2004
- [j12]Miguel Ángel Hernández-Verón, Natalia Romero Álvarez:
High order algorithms for approximating nth roots. Int. J. Comput. Math. 81(8): 1001-1014 (2004) - 2002
- [j11]J. A. Ezquerro, Miguel Ángel Hernández-Verón, M. A. Salanova:
Solving a Boundary Value Problem by a Newton-Like Method. Int. J. Comput. Math. 79(10): 1113-1120 (2002) - 2001
- [j10]José Manuel Gutiérrez Jiménez, Miguel Ángel Hernández:
An acceleration of Newton's method: Super-Halley method. Appl. Math. Comput. 117(2-3): 223-239 (2001) - 2000
- [c1]José Manuel Gutiérrez Jiménez, Miguel Ángel Hernández:
Newton's Method under Different Lipschitz Conditions. NAA 2000: 368-376
1990 – 1999
- 1999
- [j9]Miguel Ángel Hernández-Verón, M. A. Salanova:
Indices of convexity and concavity. Application to Halley method. Appl. Math. Comput. 103(1): 27-49 (1999) - [j8]M. A. Hernández-Verón, M. Jóse Rubio:
A new type of recurrence relations for the secant method. Int. J. Comput. Math. 72(4): 477-490 (1999) - 1998
- [j7]J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández-Verón:
A construction procedure of iterative methods with cubical convergence II: Another convergence approach. Appl. Math. Comput. 92(1): 59-68 (1998) - [j6]Miguel Ángel Hernández, M. A. Salanova:
Chebyshev method and convexity. Appl. Math. Comput. 95(1): 51-62 (1998) - [j5]J. A. Ezquerro, J. M. Gutiérrez, Miguel Ángel Hernández:
Solving a nonlinear equation by a uniparametric family of iterative processes. Int. J. Comput. Math. 68(3-4): 301-308 (1998) - [j4]José Antonio Ezquerro, Miguel Ángel Hernández, M. A. Salanova:
Construction of iterative processes with high order of convergence. Int. J. Comput. Math. 69(1-2): 191-201 (1998) - 1996
- [j3]M. A. Hernández-Verón, M. A. Salanova:
A family of chebyshev type methods in banach spaces. Int. J. Comput. Math. 61(1-2): 145-154 (1996) - [j2]J. A. Ezquerro, Miguel Ángel Hernández:
A note on a family of newton type iterative processes. Int. J. Comput. Math. 62(3-4): 223-232 (1996) - 1995
- [j1]José M. Gutiérrez, Miguel Ángel Hernández, M. A. Salanova:
Accessibility Of Solutions By Newton's Method. Int. J. Comput. Math. 57(3-4): 239-247 (1995)
Coauthor Index
aka: J. A. Ezquerro
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint