default search action
Tijl De Bie
Person information
- affiliation: Ghent University, Belgium
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j46]Yoosof Mashayekhi, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Scalable Job Recommendation With Lower Congestion Using Optimal Transport. IEEE Access 12: 55491-55505 (2024) - [j45]Edith Heiter, Robin Vandaele, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Incorporating Topological Priors Into Low-Dimensional Visualizations Through Topological Regularization. IEEE Access 12: 129541-129573 (2024) - [j44]Maarten Buyl, Tijl De Bie:
Inherent Limitations of AI Fairness. Commun. ACM 67(2): 48-55 (2024) - [j43]Yoosof Mashayekhi, Nan Li, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
A Challenge-based Survey of E-recruitment Recommendation Systems. ACM Comput. Surv. 56(10): 252 (2024) - [j42]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating feature attribution methods in the image domain. Mach. Learn. 113(9): 6019-6064 (2024) - [j41]Nan Li, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
FEIR: Quantifying and Reducing Envy and Inferiority for Fair Recommendation of Limited Resources. ACM Trans. Intell. Syst. Technol. 15(4): 80:1-80:24 (2024) - [j40]Yoosof Mashayekhi, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
GREASE: Graph Imbalance Reduction by Adding Sets of Edges. IEEE Trans. Knowl. Data Eng. 36(4): 1611-1623 (2024) - [c96]Sander Noels, Jorne De Blaere, Tijl De Bie:
A Dutch Financial Large Language Model. ICAIF 2024: 283-291 - [c95]Maarten Buyl, MaryBeth Defrance, Tijl De Bie:
fairret: a Framework for Differentiable Fairness Regularization Terms. ICLR 2024 - [c94]Edith Heiter, Liesbet Martens, Ruth Seurinck, Martin Guilliams, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE. ECML/PKDD (8) 2024: 379-382 - [c93]Alexander Rogiers, Maarten Buyl, Bo Kang, Tijl De Bie:
KamerRaad: Enhancing Information Retrieval in Belgian National Politics Through Hierarchical Summarization and Conversational Interfaces. ECML/PKDD (8) 2024: 409-412 - [c92]Toine Bogers, David Graus, Mesut Kaya, Chris Johnson, Jens-Joris Decorte, Tijl De Bie:
Fourth Workshop on Recommender Systems for Human Resources (RecSys in HR 2024). RecSys 2024: 1222-1226 - [e4]Mesut Kaya, Toine Bogers, David Graus, Chris Johnson, Jens-Joris Decorte, Tijl De Bie:
Proceedings of the 4th Workshop on Recommender Systems for Human Resources (RecSys-in-HR 2024) co-located with the 18th ACM Conference on Recommender Systems (RecSys 2024), Bari, Italy, 14th-18th October 2024. CEUR Workshop Proceedings 3788, CEUR-WS.org 2024 [contents] - [i56]Alexander Rogiers, Maarten Buyl, Bo Kang, Tijl De Bie:
KamerRaad: Enhancing Information Retrieval in Belgian National Politics through Hierarchical Summarization and Conversational Interfaces. CoRR abs/2404.17597 (2024) - [i55]Raphaël Romero, Maarten Buyl, Tijl De Bie, Jefrey Lijffijt:
Exploring the Performance of Continuous-Time Dynamic Link Prediction Algorithms. CoRR abs/2405.17182 (2024) - [i54]Raphaël Romero, Jefrey Lijffijt, Riccardo Rastelli, Marco Corneli, Tijl De Bie:
Gaussian Embedding of Temporal Networks. CoRR abs/2405.17253 (2024) - [i53]Nan Li, Bo Kang, Tijl De Bie:
Content-Agnostic Moderation for Stance-Neutral Recommendation. CoRR abs/2405.18941 (2024) - [i52]Edith Heiter, Liesbet Martens, Ruth Seurinck, Martin Guilliams, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE. CoRR abs/2406.12953 (2024) - [i51]Sander Noels, Sébastien Viaene, Tijl De Bie:
TopoLedgerBERT: Topological Learning of Ledger Description Embeddings using Siamese BERT-Networks. CoRR abs/2407.05175 (2024) - [i50]MaryBeth Defrance, Maarten Buyl, Tijl De Bie:
ABCFair: an Adaptable Benchmark approach for Comparing Fairness Methods. CoRR abs/2409.16965 (2024) - [i49]Sander Noels, Jorne De Blaere, Tijl De Bie:
A Dutch Financial Large Language Model. CoRR abs/2410.12835 (2024) - [i48]Maarten Buyl, Alexander Rogiers, Sander Noels, Iris Dominguez-Catena, Edith Heiter, Raphaël Romero, Iman Johary, Alexandru Cristian Mara, Jefrey Lijffijt, Tijl De Bie:
Large Language Models Reflect the Ideology of their Creators. CoRR abs/2410.18417 (2024) - [i47]Alexander Rogiers, Sander Noels, Maarten Buyl, Tijl De Bie:
Persuasion with Large Language Models: a Survey. CoRR abs/2411.06837 (2024) - 2023
- [j39]Raphaël Romero, Jefrey Lijffijt, Riccardo Rastelli, Marco Corneli, Tijl De Bie:
Gaussian Embedding of Temporal Networks. IEEE Access 11: 117971-117983 (2023) - [j38]Sander Noels, Simon De Ridder, Sébastien Viaene, Tijl De Bie:
An efficient graph-based peer selection method for financial statements. Intell. Syst. Account. Finance Manag. 30(3): 120-136 (2023) - [c91]MaryBeth Defrance, Tijl De Bie:
Maximal fairness. FAccT 2023: 851-880 - [c90]Nan Li, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
FEIR: Quantifying and Reducing Envy and Inferiority for Fair Recommendation of Limited Resources. HR@RecSys 2023 - [c89]Sander Noels, Adriaan Merlevede, Andrew Fecheyr, Maarten Vanhalst, Nick Meerlaen, Sébastien Viaene, Tijl De Bie:
Automated Financial Analysis Using GPT-4. ECML/PKDD (7) 2023: 345-349 - [c88]Yoosof Mashayekhi, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
ReCon: Reducing Congestion in Job Recommendation using Optimal Transport. RecSys 2023: 696-701 - [i46]Edith Heiter, Robin Vandaele, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Topologically Regularized Data Embeddings. CoRR abs/2301.03338 (2023) - [i45]MaryBeth Defrance, Tijl De Bie:
Maximal Fairness. CoRR abs/2304.06057 (2023) - [i44]Nan Li, Bo Kang, Tijl De Bie:
SkillGPT: a RESTful API service for skill extraction and standardization using a Large Language Model. CoRR abs/2304.11060 (2023) - [i43]Yoosof Mashayekhi, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
ReCon: Reducing Congestion in Job Recommendation using Optimal Transport. CoRR abs/2308.09516 (2023) - [i42]Nan Li, Bo Kang, Tijl De Bie:
LLM4Jobs: Unsupervised occupation extraction and standardization leveraging Large Language Models. CoRR abs/2309.09708 (2023) - [i41]Maarten Buyl, MaryBeth Defrance, Tijl De Bie:
fairret: a Framework for Differentiable Fairness Regularization Terms. CoRR abs/2310.17256 (2023) - [i40]Nan Li, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
FEIR: Quantifying and Reducing Envy and Inferiority for Fair Recommendation of Limited Resources. CoRR abs/2311.04542 (2023) - [i39]Raphaël Romero, Tijl De Bie, Jefrey Lijffijt:
New Perspectives on the Evaluation of Link Prediction Algorithms for Dynamic Graphs. CoRR abs/2311.18486 (2023) - 2022
- [j37]Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic Smyth, Christopher K. I. Williams:
Automating data science. Commun. ACM 65(3): 76-87 (2022) - [j36]Edith Heiter, Bo Kang, Tijl De Bie, Jefrey Lijffijt:
Evaluating Representation Learning and Graph Layout Methods for Visualization. IEEE Computer Graphics and Applications 42(3): 19-28 (2022) - [j35]Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
EvalNE: A framework for network embedding evaluation. SoftwareX 17: 100997 (2022) - [c87]Robin Vandaele, Bo Kang, Tijl De Bie, Yvan Saeys:
The Curse Revisited: When are Distances Informative for the Ground Truth in Noisy High-Dimensional Data? AISTATS 2022: 2158-2172 - [c86]Sander Noels, Benjamin Vandermarliere, Ken Bastiaensen, Tijl De Bie:
An Earth Mover's Distance Based Graph Distance Metric For Financial Statements. CIFEr 2022: 1-8 - [c85]Raphaël Romero, Tijl De Bie:
Embedding-based next song recommendation for playlists. ESANN 2022 - [c84]Robin Vandaele, Bo Kang, Jefrey Lijffijt, Tijl De Bie, Yvan Saeys:
Topologically Regularized Data Embeddings. ICLR 2022 - [c83]Ahmad Mel, Tijl De Bie:
Mining Interesting Outlier Subgraphs in Attributed Graphs. KI (Workshops) 2022 - [c82]Alexandru Cristian Mara, Jefrey Lijffijt, Stephan Günnemann, Tijl De Bie:
A Systematic Evaluation of Node Embedding Robustness. LoG 2022: 42 - [c81]Maarten Buyl, Tijl De Bie:
Optimal Transport of Classifiers to Fairness. NeurIPS 2022 - [d2]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating Feature Attribution Methods in the Image Domain: Benchmark results and model parameters. Zenodo, 2022 - [d1]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating Feature Attribution Methods in the Image Domain: High-Dimensional Datasets. Zenodo, 2022 - [i38]Maarten Buyl, Tijl De Bie:
Optimal Transport of Binary Classifiers to Fairness. CoRR abs/2202.03814 (2022) - [i37]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating Feature Attribution Methods in the Image Domain. CoRR abs/2202.12270 (2022) - [i36]Raphaël Romero, Bo Kang, Tijl De Bie:
Graph-Survival: A Survival Analysis Framework for Machine Learning on Temporal Networks. CoRR abs/2203.07260 (2022) - [i35]Yoosof Mashayekhi, Nan Li, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
A challenge-based survey of e-recruitment recommendation systems. CoRR abs/2209.05112 (2022) - [i34]Alexandru Mara, Jefrey Lijffijt, Stephan Günnemann, Tijl De Bie:
A Systematic Evaluation of Node Embedding Robustness. CoRR abs/2209.08064 (2022) - [i33]Maarten Buyl, Tijl De Bie:
Inherent Limitations of AI Fairness. CoRR abs/2212.06495 (2022) - 2021
- [j34]Junning Deng, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Mining explainable local and global subgraph patterns with surprising densities. Data Min. Knowl. Discov. 35(1): 321-371 (2021) - [j33]Bo Kang, Dario García-García, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
Conditional t-SNE: more informative t-SNE embeddings. Mach. Learn. 110(10): 2905-2940 (2021) - [j32]Robin Vandaele, Bastian Rieck, Yvan Saeys, Tijl De Bie:
Stable topological signatures for metric trees through graph approximations. Pattern Recognit. Lett. 147: 85-92 (2021) - [c80]Bo Kang, Dario García-García, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
Conditional t-SNE: More informative t-SNE embeddings. DSAA 2021: 1-2 - [c79]Yoosof Mashayekhi, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Quantifying and Reducing Imbalance in Networks. HR@RecSys 2021 - [c78]Xi Chen, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Adversarial Robustness of Probabilistic Network Embedding for Link Prediction. PKDD/ECML Workshops (2) 2021: 22-38 - [c77]Maarten Buyl, Tijl De Bie:
The KL-Divergence Between a Graph Model and its Fair I-Projection as a Fairness Regularizer. ECML/PKDD (2) 2021: 351-366 - [c76]Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Explanations for Network Embedding-Based Link Predictions. PKDD/ECML Workshops (1) 2021: 473-488 - [i32]Maarten Buyl, Tijl De Bie:
The KL-Divergence between a Graph Model and its Fair I-Projection as a Fairness Regularizer. CoRR abs/2103.01846 (2021) - [i31]Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic Smyth, Christopher K. I. Williams:
Automating Data Science: Prospects and Challenges. CoRR abs/2105.05699 (2021) - [i30]Xi Chen, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Adversarial Robustness of Probabilistic Network Embedding for Link Prediction. CoRR abs/2107.01936 (2021) - [i29]Robin Vandaele, Bo Kang, Tijl De Bie, Yvan Saeys:
The Curse Revisited: a Newly Quantified Concept of Meaningful Distances for Learning from High-Dimensional Noisy Data. CoRR abs/2109.10569 (2021) - [i28]Robin Vandaele, Bo Kang, Jefrey Lijffijt, Tijl De Bie, Yvan Saeys:
Topologically Regularized Data Embeddings. CoRR abs/2110.09193 (2021) - [i27]Sander Noels, Benjamin Vandermarliere, Ken Bastiaensen, Tijl De Bie:
An Earth Mover's Distance Based Graph Distance Metric For Financial Statements. CoRR abs/2112.07598 (2021) - 2020
- [j31]Kai Puolamäki, Emilia Oikarinen, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Interactive visual data exploration with subjective feedback: an information-theoretic approach. Data Min. Knowl. Discov. 34(1): 21-49 (2020) - [j30]Anes Bendimerad, Ahmad Mel, Jefrey Lijffijt, Marc Plantevit, Céline Robardet, Tijl De Bie:
SIAS-miner: mining subjectively interesting attributed subgraphs. Data Min. Knowl. Discov. 34(2): 355-393 (2020) - [j29]Florian Adriaens, Tijl De Bie, Aristides Gionis, Jefrey Lijffijt, Antonis Matakos, Polina Rozenshtein:
Relaxing the strong triadic closure problem for edge strength inference. Data Min. Knowl. Discov. 34(3): 611-651 (2020) - [j28]Robin Vandaele, Yvan Saeys, Tijl De Bie:
Mining Topological Structure in Graphs through Forest Representations. J. Mach. Learn. Res. 21: 215:1-215:68 (2020) - [j27]Bo Kang, Kai Puolamäki, Jefrey Lijffijt, Tijl De Bie:
A Constrained Randomization Approach to Interactive Visual Data Exploration with Subjective Feedback. IEEE Trans. Knowl. Data Eng. 32(9): 1666-1679 (2020) - [c75]Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodríguez, Tijl De Bie, Peter A. Flach:
FACE: Feasible and Actionable Counterfactual Explanations. AIES 2020: 344-350 - [c74]Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, Tijl De Bie:
CSNE: Conditional Signed Network Embedding. CIKM 2020: 1105-1114 - [c73]Florian Adriaens, Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
Block-Approximated Exponential Random Graphs. DSAA 2020: 70-80 - [c72]Alexandru Cristian Mara, Jefrey Lijffijt, Tijl De Bie:
Benchmarking Network Embedding Models for Link Prediction: Are We Making Progress? DSAA 2020: 138-147 - [c71]Ahmad Mel, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
FONDUE: Framework for Node Disambiguation Using Network Embeddings. DSAA 2020: 158-167 - [c70]Maarten Buyl, Tijl De Bie:
DeBayes: a Bayesian Method for Debiasing Network Embeddings. ICML 2020: 1220-1229 - [c69]Robin Vandaele, Yvan Saeys, Tijl De Bie:
Graph Approximations to Geodesics on Metric Graphs. ICPR 2020: 7328-7334 - [c68]Anes Bendimerad, Jefrey Lijffijt, Marc Plantevit, Céline Robardet, Tijl De Bie:
Gibbs Sampling Subjectively Interesting Tiles. IDA 2020: 80-92 - [c67]Junning Deng, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Explainable Subgraphs with Surprising Densities: A Subgroup Discovery Approach. SDM 2020: 586-594 - [i26]Junning Deng, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Explainable Subgraphs with Surprising Densities: A Subgroup Discovery Approach. CoRR abs/2002.00793 (2020) - [i25]Xi Chen, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
ALPINE: Active Link Prediction using Network Embedding. CoRR abs/2002.01227 (2020) - [i24]Florian Adriaens, Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
Scalable Dyadic Independence Models with Local and Global Constraints. CoRR abs/2002.07076 (2020) - [i23]Ahmad Mel, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
FONDUE: A Framework for Node Disambiguation Using Network Embeddings. CoRR abs/2002.10127 (2020) - [i22]Maarten Buyl, Tijl De Bie:
DeBayes: a Bayesian method for debiasing network embeddings. CoRR abs/2002.11442 (2020) - [i21]Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
Network Representation Learning for Link Prediction: Are we improving upon simple heuristics? CoRR abs/2002.11522 (2020) - [i20]Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, Tijl De Bie:
CSNE: Conditional Signed Network Embedding. CoRR abs/2005.10701 (2020)
2010 – 2019
- 2019
- [j26]Florian Adriaens, Jefrey Lijffijt, Tijl De Bie:
Subjectively interesting connecting trees and forests. Data Min. Knowl. Discov. 33(4): 1088-1124 (2019) - [j25]Junning Deng, Jefrey Lijffijt, Bo Kang, Tijl De Bie:
SIMIT: Subjectively Interesting Motifs in Time Series. Entropy 21(6): 566 (2019) - [j24]Valerio Lorenzoni, Pieter Van den Berghe, Pieter-Jan Maes, Tijl De Bie, Dirk De Clercq, Marc Leman:
Design and validation of an auditory biofeedback system for modification of running parameters. J. Multimodal User Interfaces 13(3): 167-180 (2019) - [c66]Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Conditional Network Embeddings. BNAIC/BENELEARN 2019 - [c65]Florian Adriaens, Çigdem Aslay, Tijl De Bie, Aristides Gionis, Jefrey Lijffijt:
Discovering Interesting Cycles in Directed Graphs. CIKM 2019: 1191-1200 - [c64]Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Conditional Network Embeddings. ICLR (Poster) 2019 - [c63]Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
EvalNE: A Framework for Evaluating Network Embeddings on Link Prediction. RML@ICLR 2019 - [c62]Anes Bendimerad, Jefrey Lijffijt, Marc Plantevit, Céline Robardet, Tijl De Bie:
Contrastive Antichains in Hierarchies. KDD 2019: 294-304 - [c61]Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
EvalNE: A Framework for Evaluating Network Embeddings on Link Prediction. EDML@SDM 2019: 5-13 - [i19]Alexandru Mara, Jefrey Lijffijt, Tijl De Bie:
EvalNE: A Framework for Evaluating Network Embeddings on Link Prediction. CoRR abs/1901.09691 (2019) - [i18]Xi Chen, Panayiotis Tsaparas, Jefrey Lijffijt, Tijl De Bie:
Opinion Dynamics with Backfire Effect and Biased Assimilation. CoRR abs/1903.11535 (2019) - [i17]Bo Kang, Jefrey Lijffijt, Tijl De Bie:
ExplaiNE: An Approach for Explaining Network Embedding-based Link Predictions. CoRR abs/1904.12694 (2019) - [i16]Anes Bendimerad, Ahmad Mel, Jefrey Lijffijt, Marc Plantevit, Céline Robardet, Tijl De Bie:
Mining Subjectively Interesting Attributed Subgraphs. CoRR abs/1905.03040 (2019) - [i15]Bo Kang, Dario García-García, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
Conditional t-SNE: Complementary t-SNE embeddings through factoring out prior information. CoRR abs/1905.10086 (2019) - [i14]Florian Adriaens, Çigdem Aslay, Tijl De Bie, Aristides Gionis, Jefrey Lijffijt:
Discovering Interesting Cycles in Directed Graphs. CoRR abs/1909.01060 (2019) - [i13]Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodriguez, Tijl De Bie, Peter A. Flach:
FACE: Feasible and Actionable Counterfactual Explanations. CoRR abs/1909.09369 (2019) - 2018
- [j23]Bo Kang, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
SICA: subjectively interesting component analysis. Data Min. Knowl. Discov. 32(4): 949-987 (2018) - [j22]Len Vande Veire, Tijl De Bie:
From raw audio to a seamless mix: creating an automated DJ system for Drum and Bass. EURASIP J. Audio Speech Music. Process. 2018: 13 (2018) - [c60]Kai Puolamäki, Emilia Oikarinen, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Interactive Visual Data Exploration with Subjective Feedback: An Information-Theoretic Approach. ICDE 2018: 1208-1211 - [c59]Jefrey Lijffijt, Bo Kang, Wouter Duivesteijn, Kai Puolamäki, Emilia Oikarinen, Tijl De Bie:
Subjectively Interesting Subgroup Discovery on Real-Valued Targets. ICDE 2018: 1352-1355 - [c58]Xi Chen, Jefrey Lijffijt, Tijl De Bie:
Quantifying and Minimizing Risk of Conflict in Social Networks. KDD 2018: 1197-1205 - [c57]Valerio Lorenzoni, Pieter-Jan Maes, Pieter Van den Berghe, Dirk De Clercq, Tijl De Bie, Marc Leman:
A biofeedback music-sonification system for gait retraining. MOCO 2018: 28:1-28:5 - [c56]Robin Vandaele, Tijl De Bie, Yvan Saeys:
Local Topological Data Analysis to Uncover the Global Structure of Data Approaching Graph-Structured Topologies. ECML/PKDD (2) 2018: 19-36 - [c55]Rafael Poyiadzi, Raúl Santos-Rodríguez, Tijl De Bie:
Ordinal Label Proportions. ECML/PKDD (1) 2018: 306-321 - [i12]Florian Adriaens, Tijl De Bie, Aristides Gionis, Jefrey Lijffijt, Polina Rozenshtein:
From acquaintance to best friend forever: robust and fine-grained inference of social tie strengths. CoRR abs/1802.03549 (2018) - [i11]Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Conditional Network Embeddings. CoRR abs/1805.07544 (2018) - [i10]Tijl De Bie, Luc De Raedt, Holger H. Hoos, Padhraic Smyth:
Automating Data Science (Dagstuhl Seminar 18401). Dagstuhl Reports 8(9): 154-181 (2018) - 2017
- [c54]Paolo Simeone, Raúl Santos-Rodríguez, Matt McVicar, Jefrey Lijffijt, Tijl De Bie:
Hierarchical Novelty Detection. IDA 2017: 310-321 - [c53]Florian Adriaens, Jefrey Lijffijt, Tijl De Bie:
Subjectively Interesting Connecting Trees. ECML/PKDD (2) 2017: 53-69 - [i9]Jefrey Lijffijt, Bo Kang, Wouter Duivesteijn, Kai Puolamäki, Emilia Oikarinen, Tijl De Bie:
Subjectively Interesting Subgroup Discovery on Real-valued Targets. CoRR abs/1710.04521 (2017) - [i8]Kai Puolamäki, Emilia Oikarinen, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Interactive Visual Data Exploration with Subjective Feedback: An Information-Theoretic Approach. CoRR abs/1710.08167 (2017) - 2016
- [j21]Jefrey Lijffijt, Eirini Spyropoulou, Bo Kang, Tijl De Bie:
P-N-RMiner: a generic framework for mining interesting structured relational patterns. Int. J. Data Sci. Anal. 1(1): 61-76 (2016) - [j20]Matthijs van Leeuwen, Tijl De Bie, Eirini Spyropoulou, Cédric Mesnage:
Subjective interestingness of subgraph patterns. Mach. Learn. 105(1): 41-75 (2016) - [j19]Matt McVicar, Benjamin Sach, Cédric Mesnage, Jefrey Lijffijt, Eirini Spyropoulou, Tijl De Bie:
SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees. Pattern Recognit. Lett. 79: 52-59 (2016) - [c52]Tijl De Bie, Jefrey Lijffijt, Raúl Santos-Rodríguez, Bo Kang:
Informative data projections: a framework and two examples. ESANN 2016 - [c51]Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
Learning to separate vocals from polyphonic mixtures via ensemble methods and structured output prediction. ICASSP 2016: 450-454 - [c50]Tias Guns, Achille Aknin, Jefrey Lijffijt, Tijl De Bie:
Direct Mining of Subjectively Interesting Relational Patterns. ICDM 2016: 913-918 - [c49]Bo Kang, Jefrey Lijffijt, Raúl Santos-Rodriguez, Tijl De Bie:
Subjectively Interesting Component Analysis: Data Projections that Contrast with Prior Expectations. KDD 2016: 1615-1624 - [c48]Tijl De Bie, Jefrey Lijffijt, Cédric Mesnage, Raúl Santos-Rodriguez:
Detecting trends in twitter time series. MLSP 2016: 1-6 - [c47]Bo Kang, Kai Puolamäki, Jefrey Lijffijt, Tijl De Bie:
A Tool for Subjective and Interactive Visual Data Exploration. ECML/PKDD (3) 2016: 3-7 - [c46]Kai Puolamäki, Bo Kang, Jefrey Lijffijt, Tijl De Bie:
Interactive Visual Data Exploration with Subjective Feedback. ECML/PKDD (2) 2016: 214-229 - 2015
- [j18]Kleanthis-Nikolaos Kontonasios, Tijl De Bie:
Subjectively interesting alternative clusterings. Mach. Learn. 98(1-2): 31-56 (2015) - [c45]Jefrey Lijffijt, Eirini Spyropoulou, Bo Kang, Tijl De Bie:
P-N-RMiner: A generic framework for mining interesting structured relational patterns. DSAA 2015: 1-10 - [c44]Matt McVicar, Cédric Mesnage, Jefrey Lijffijt, Tijl De Bie:
Interactively Exploring Supply and Demand in the UK Independent Music Scene. ECML/PKDD (3) 2015: 289-292 - [c43]Matt McVicar, Cédric Mesnage, Jefrey Lijffijt, Eirini Spyropoulou, Tijl De Bie:
Supply and demand of independent UK music artists on the web. WebSci 2015: 48:1-48:2 - [e3]Élisa Fromont, Tijl De Bie, Matthijs van Leeuwen:
Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA 2015, Saint Etienne, France, October 22-24, 2015, Proceedings. Lecture Notes in Computer Science 9385, Springer 2015, ISBN 978-3-319-24464-8 [contents] - [i7]Tijl De Bie, Jefrey Lijffijt, Raúl Santos-Rodriguez, Bo Kang:
Informative Data Projections: A Framework and Two Examples. CoRR abs/1511.08762 (2015) - 2014
- [j17]Eirini Spyropoulou, Tijl De Bie, Mario Boley:
Interesting pattern mining in multi-relational data. Data Min. Knowl. Discov. 28(3): 808-849 (2014) - [j16]Matt McVicar, Raúl Santos-Rodriguez, Yizhao Ni, Tijl De Bie:
Automatic Chord Estimation from Audio: A Review of the State of the Art. IEEE ACM Trans. Audio Speech Lang. Process. 22(2): 556-575 (2014) - [c42]Eirini Spyropoulou, Tijl De Bie:
Mining approximate multi-relational patterns. DSAA 2014: 477-483 - 2013
- [j15]Tijl De Bie, Peter A. Flach:
Guest editors' introduction: special section of selected papers from ECML-PKDD 2012. Data Min. Knowl. Discov. 27(3): 442-443 (2013) - [j14]Tijl De Bie, Peter A. Flach:
Guest editors' introduction: special issue of selected papers from ECML-PKDD 2012. Mach. Learn. 92(1): 1-3 (2013) - [j13]Yizhao Ni, Matt McVicar, Raúl Santos-Rodríguez, Tijl De Bie:
Understanding Effects of Subjectivity in Measuring Chord Estimation Accuracy. IEEE ACM Trans. Audio Speech Lang. Process. 21(12): 2607-2615 (2013) - [c41]Eirini Spyropoulou, Tijl De Bie, Mario Boley:
Mining Interesting Patterns in Multi-relational Data with N-ary Relationships. Discovery Science 2013: 217-232 - [c40]Tijl De Bie:
Subjective Interestingness in Exploratory Data Mining. IDA 2013: 19-31 - [c39]Kleanthis-Nikolaos Kontonasios, Jilles Vreeken, Tijl De Bie:
Maximum Entropy Models for Iteratively Identifying Subjectively Interesting Structure in Real-Valued Data. ECML/PKDD (2) 2013: 256-271 - [c38]Tijl De Bie, Eirini Spyropoulou:
A Theoretical Framework for Exploratory Data Mining: Recent Insights and Challenges Ahead. ECML/PKDD (3) 2013: 612-616 - 2012
- [j12]Marco Turchi, Tijl De Bie, Cyril Goutte, Nello Cristianini:
Learning to Translate: A Statistical and Computational Analysis. Adv. Artif. Intell. 2012: 484580:1-484580:15 (2012) - [j11]Nick Fyson, Tijl De Bie, Nello Cristianini:
The NetCover algorithm for the reconstruction of causal networks. Neurocomputing 96: 19-28 (2012) - [j10]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
An End-to-End Machine Learning System for Harmonic Analysis of Music. IEEE Trans. Speech Audio Process. 20(6): 1771-1783 (2012) - [j9]Marco Turchi, Tijl De Bie, Nello Cristianini:
An intelligent Web agent that autonomously learns how to translate. Web Intell. Agent Syst. 10(2): 165-178 (2012) - [j8]Kleanthis-Nikolaos Kontonasios, Eirini Spyropoulou, Tijl De Bie:
Knowledge discovery interestingness measures based on unexpectedness. WIREs Data Mining Knowl. Discov. 2(5): 386-399 (2012) - [c37]Omar Ali, Giovanni Zappella, Tijl De Bie, Nello Cristianini:
An Empirical Comparison of Label Prediction Algorithms on Automatically Inferred Networks. ICPRAM (2) 2012: 259-268 - [c36]Kleanthis-Nikolaos Kontonasios, Tijl De Bie:
Formalizing Complex Prior Information to Quantify Subjective Interestingness of Frequent Pattern Sets. IDA 2012: 161-171 - [c35]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
Using Hyper-genre Training to Explore Genre Information for Automatic Chord Estimation. ISMIR 2012: 109-114 - [e2]Peter A. Flach, Tijl De Bie, Nello Cristianini:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part I. Lecture Notes in Computer Science 7523, Springer 2012, ISBN 978-3-642-33459-7 [contents] - [e1]Peter A. Flach, Tijl De Bie, Nello Cristianini:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II. Lecture Notes in Computer Science 7524, Springer 2012, ISBN 978-3-642-33485-6 [contents] - 2011
- [j7]Tijl De Bie:
Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min. Knowl. Discov. 23(3): 407-446 (2011) - [c34]Nick Fyson, Tijl De Bie, Nello Cristianini:
Reconstruction of Causal Networks by Set Covering. ICANNGA (2) 2011: 196-205 - [c33]Kleanthis-Nikolaos Kontonasios, Jilles Vreeken, Tijl De Bie:
Maximum Entropy Modelling for Assessing Results on Real-Valued Data. ICDM 2011: 350-359 - [c32]Eirini Spyropoulou, Tijl De Bie:
Interesting Multi-relational Patterns. ICDM 2011: 675-684 - [c31]Matt McVicar, Yizhao Ni, Tijl De Bie, Raúl Santos-Rodriguez:
Leveraging Noisy Online Databases for Use in Chord Recognition. ISMIR 2011: 639-644 - [c30]Matt McVicar, Tim Freeman, Tijl De Bie:
Mining the Correlation between Lyrical and Audio Features and the Emergence of Mood. ISMIR 2011: 783-788 - [c29]Tristan Mark Snowsill, Nick Fyson, Tijl De Bie, Nello Cristianini:
Refining causality: who copied from whom? KDD 2011: 466-474 - [c28]Tijl De Bie:
An information theoretic framework for data mining. KDD 2011: 564-572 - [c27]Tijl De Bie:
Subjectively Interesting Alternative Clusters. MultiClust@ECML/PKDD 2011: 43-54 - [c26]Omar Ali, Ilias N. Flaounas, Tijl De Bie, Nello Cristianini:
Celebrity Watch: Browsing News Content by Exploiting Social Intelligence. ECML/PKDD (3) 2011: 613-616 - [c25]Ilias N. Flaounas, Omar Ali, Marco Turchi, Tristan Snowsill, Florent Nicart, Tijl De Bie, Nello Cristianini:
NOAM: news outlets analysis and monitoring system. SIGMOD Conference 2011: 1275-1278 - [i6]Eirini Spyropoulou, Tijl De Bie:
Interesting Multi-Relational Patterns. CoRR abs/1106.4475 (2011) - [i5]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
An end-to-end machine learning system for harmonic analysis of music. CoRR abs/1107.4969 (2011) - [i4]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
Meta-song evaluation for chord recognition. CoRR abs/1109.0420 (2011) - 2010
- [j6]Tijl De Bie, Kleanthis-Nikolaos Kontonasios, Eirini Spyropoulou:
A framework for mining interesting pattern sets. SIGKDD Explor. 12(2): 92-100 (2010) - [c24]Tristan Snowsill, Florent Nicart, Marco Stefani, Tijl De Bie, Nello Cristianini:
Finding surprising patterns in textual data streams. CIP 2010: 405-410 - [c23]Vasileios Lampos, Tijl De Bie, Nello Cristianini:
Flu Detector - Tracking Epidemics on Twitter. ECML/PKDD (3) 2010: 599-602 - [c22]Tristan Snowsill, Ilias N. Flaounas, Tijl De Bie, Nello Cristianini:
Detecting Events in a Million New York Times Articles. ECML/PKDD (3) 2010: 615-618 - [c21]Kleanthis-Nikolaos Kontonasios, Tijl De Bie:
An Information-Theoretic Approach to Finding Informative Noisy Tiles in Binary Databases. SDM 2010: 153-164 - [c20]Omar Ali, Ilias N. Flaounas, Tijl De Bie, Nick Mosdell, Justin Lewis, Nello Cristianini:
Automating News Content Analysis: An Application to Gender Bias and Readability. WAPA 2010: 36-43 - [i3]Nick Fyson, Tijl De Bie, Nello Cristianini:
Reconstruction of Causal Networks by Set Covering. CoRR abs/1006.0849 (2010) - [i2]Tijl De Bie:
Maximum entropy models and subjective interestingness: an application to tiles in binary databases. CoRR abs/1008.3314 (2010)
2000 – 2009
- 2009
- [j5]Hong Sun, Tijl De Bie, Valerie Storms, Qiang Fu, Thomas Dhollander, Karen Lemmens, Annemieke Verstuyf, Bart De Moor, Kathleen Marchal:
ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules. BMC Bioinform. 10(S-1) (2009) - [c19]Marco Turchi, Tijl De Bie, Nello Cristianini:
Learning to translate: a statistical and computational analysis. SMART@EAMT 2009 - [c18]Tijl De Bie, Thiago Turchetti Maia, Antônio de Pádua Braga:
Machine Learning with Labeled and Unlabeled Data. ESANN 2009 - [c17]Marco Turchi, Tijl De Bie, Nello Cristianini:
An Intelligent Agent That Autonomously Learns How to Translate. IAT 2009: 12-19 - [c16]Ilias N. Flaounas, Marco Turchi, Tijl De Bie, Nello Cristianini:
Inference and Validation of Networks. ECML/PKDD (1) 2009: 344-358 - [c15]Marco Turchi, Ilias N. Flaounas, Omar Ali, Tijl De Bie, Tristan Snowsill, Nello Cristianini:
Found in Translation. ECML/PKDD (2) 2009: 746-749 - [i1]Tijl De Bie:
Explicit probabilistic models for databases and networks. CoRR abs/0906.5148 (2009) - 2008
- [c14]Anneleen Daemen, Olivier Gevaert, Tijl De Bie, Annelies Debucquoy, Jean-Pascal Machiels, Bart De Moor, Karin Haustermans:
Integrating Microarray and Proteomics Data to Predict the Response of Cetuximab in Patients with Rectal Cancer. Pacific Symposium on Biocomputing 2008: 166-177 - [c13]Marco Turchi, Tijl De Bie, Nello Cristianini:
Learning Performance of a Machine Translation System: a Statistical and Computational Analysis. WMT@ACL 2008: 35-43 - 2007
- [j4]Margherita Bresco, Marco Turchi, Tijl De Bie, Nello Cristianini:
Modeling sequence evolution with kernel methods. Comput. Optim. Appl. 38(2): 281-298 (2007) - [c12]Elisa Ricci, Tijl De Bie, Nello Cristianini:
Discriminative Sequence Labeling by Z-Score Optimization. ECML 2007: 274-285 - [c11]Tijl De Bie:
Deploying SDP for machine learning. ESANN 2007: 205-210 - [c10]Sándor Szedmák, Tijl De Bie, David R. Hardoon:
A metamorphosis of Canonical Correlation Analysis into multivariate maximum margin learning. ESANN 2007: 211-216 - [c9]Elisa Ricci, Tijl De Bie, Nello Cristianini:
Learning to Align: A Statistical Approach. IDA 2007: 25-36 - [c8]Tijl De Bie, Léon-Charles Tranchevent, Liesbeth M. M. van Oeffelen, Yves Moreau:
Kernel-based data fusion for gene prioritization. ISMB/ECCB (Supplement of Bioinformatics) 2007: 125-132 - [c7]Arianna Gallo, Tijl De Bie, Nello Cristianini:
MINI: Mining Informative Non-redundant Itemsets. PKDD 2007: 438-445 - 2006
- [j3]Tijl De Bie, Nello Cristianini, Jeffery P. Demuth, Matthew W. Hahn:
CAFE: a computational tool for the study of gene family evolution. Bioinform. 22(10): 1269-1271 (2006) - [j2]Tijl De Bie, Nello Cristianini:
Fast SDP Relaxations of Graph Cut Clustering, Transduction, and Other Combinatorial Problem. J. Mach. Learn. Res. 7: 1409-1436 (2006) - [c6]Alexander N. Dolia, Tijl De Bie, Christopher J. Harris, John Shawe-Taylor, D. M. Titterington:
The Minimum Volume Covering Ellipsoid Estimation in Kernel-Defined Feature Spaces. ECML 2006: 630-637 - [p1]Tijl De Bie, Nello Cristianini:
Semi-Supervised Learning Using Semi-Definite Programming. Semi-Supervised Learning 2006: 118-135 - 2005
- [c5]Tijl De Bie, Patrick Monsieurs, Kristof Engelen, Bart De Moor, Nello Cristianini, Kathleen Marchal:
Discovering Transcriptional Modules from Motif, Chip-Chip and Microarray Data. Pacific Symposium on Biocomputing 2005 - 2004
- [j1]Gert R. G. Lanckriet, Tijl De Bie, Nello Cristianini, Michael I. Jordan, William Stafford Noble:
A statistical framework for genomic data fusion. Bioinform. 20(16): 2626-2635 (2004) - [c4]Tijl De Bie, Nello Cristianini:
Kernel Methods for Exploratory Pattern Analysis: A Demonstration on Text Data. SSPR/SPR 2004: 16-29 - [c3]Tijl De Bie, Johan A. K. Suykens, Bart De Moor:
Learning from General Label Constraints. SSPR/SPR 2004: 671-679 - 2003
- [c2]Tijl De Bie, Michinari Momma, Nello Cristianini:
Efficiently Learning the Metric with Side-Information. ALT 2003: 175-189 - [c1]Tijl De Bie, Nello Cristianini:
Convex Methods for Transduction. NIPS 2003: 73-80
Coauthor Index
aka: Alexandru Cristian Mara
aka: Raúl Santos-Rodriguez
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint