default search action
Shingo Shimoda
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c39]Álvaro Costa-García, Shingo Shimoda:
Characterization of sEMG Spectral Properties During Lower Limb Muscle Activation. BIOSTEC (1) 2024: 705-712 - [c38]Zhe Chen, Tao Sun, Xie Chen, Shingo Shimoda, Huaping Wang, Qiang Huang, Qing Shi:
A Modular Spiking Neural Network-Based Neuro-Robotic System for Exploring Embodied Intelligence. ICARM 2024: 1093-1098 - [i2]Matti Itkonen, Shotaro Okajima, Sayako Ueda, Álvaro Costa-García, Yang Ningjia, Tadatoshi Kurogi, Takeshi Fujiwara, Shigeru Kurimoto, Shintaro Oyama, Masaomi Saeki, Michiro Yamamoto, Hidemasa Yoneda, Hitoshi Hirata, Shingo Shimoda:
Cognitive Process during Palpation and Basic Concept of Remote Palpation System. CoRR abs/2407.05595 (2024) - [i1]Matti Itkonen, Riku Kawabata, Satsuki Yamauchi, Shotaro Okajima, Hitoshi Hirata, Shingo Shimoda:
Restoration of Reduced Self-Efficacy Caused by Chronic Pain through Manipulated Sensory Discrepancy. CoRR abs/2409.06262 (2024) - 2023
- [j26]Gentiane Venture, Kenji Tahara, Natsuki Yamanobe, Shingo Shimoda, Masahiro Shiomi:
Special issue on robot and human interactive communication 2023 (selected papers from RO-MAN 2022). Adv. Robotics 37(24): 1533 (2023) - [j25]Zhe Chen, Xie Chen, Shingo Shimoda, Qiang Huang, Qing Shi, Toshio Fukuda, Tao Sun:
A Modular Biological Neural Network-Based Neuro-Robotic System via Local Chemical Stimulation and Calcium Imaging. IEEE Robotics Autom. Lett. 8(9): 5839-5846 (2023) - [j24]Alessandra Sciutti, Michael Beetz, Tetsunari Inamura, Ayorkor Korsah, Jean Oh, Giulio Sandini, Shingo Shimoda, David Vernon:
The Present and the Future of Cognitive Robotics [TC Spotlight]. IEEE Robotics Autom. Mag. 30(3): 160-163 (2023) - [j23]Muhammad Hannan Ahmed, Jiazheng Chai, Shingo Shimoda, Mitsuhiro Hayashibe:
Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion. Sensors 23(9): 4188 (2023) - 2022
- [j22]Tadahiro Taniguchi, Takayuki Nagai, Shingo Shimoda, Angelo Cangelosi, Yiannis Demiris, Yutaka Matsuo, Kenji Doya, Tetsuya Ogata, Lorenzo Jamone, Yukie Nagai, Emre Ugur, Daichi Mochihashi, Yuuya Unno, Kazuo Okanoya, Takashi Hashimoto:
Special issue on Symbol Emergence in Robotics and Cognitive Systems (I). Adv. Robotics 36(1-2): 1-2 (2022) - [j21]Shingo Shimoda, Lorenzo Jamone, Dimitri Ognibene, Takayuki Nagai, Alessandra Sciutti, Álvaro Costa-García, Yohei Oseki, Tadahiro Taniguchi:
What is the role of the next generation of cognitive robotics? Adv. Robotics 36(1-2): 3-16 (2022) - [j20]Tadahiro Taniguchi, Takayuki Nagai, Shingo Shimoda, Angelo Cangelosi, Yiannis Demiris, Yutaka Matsuo, Kenji Doya, Tetsuya Ogata, Lorenzo Jamone, Yukie Nagai, Emre Ugur, Daichi Mochihashi, Yuuya Unno, Kazuo Okanoya, Takashi Hashimoto:
Special issue on symbol emergence in robotics and cognitive systems (II). Adv. Robotics 36(5-6): 217-218 (2022) - [c37]Álvaro Costa-García, Shotaro Okajima, Ningjia Yang, Sayako Ueda, Shingo Shimoda:
Current Trends and Challenges towards the Digital Health Era. ARSO 2022: 1-5 - [c36]Shingo Shimoda, Shotaro Okajima, Takeshi Fujiwara, Hitoshi Hirata:
Virtual-communication beyond our consciousness. ARSO 2022: 1-2 - [c35]Zhe Chen, Tao Sun, Zihou Wei, Xie Chen, Shingo Shimoda, Toshio Fukuda, Qiang Huang, Qing Shi:
A real-time neuro-robot system for robot state control. RCAR 2022: 124-129 - [c34]Yamato Kuroda, Qi An, Hiroshi Yamakawa, Shingo Shimoda, Jun-ichiro Furukawa, Jun Morimoto, Yuichi Nakamura, Ryo Kurazume:
Development of a Chair to Support Human Standing Motion -Seat movement mechanism using zip chain actuator-. SII 2022: 555-560 - 2021
- [j19]Hiroki Kogami, Qi An, Ningjia Yang, Ruoxi Wang, Kazunori Yoshida, Hiroyuki Hamada, Hiroshi Yamakawa, Yusuke Tamura, Shingo Shimoda, Hiroshi Yamasaki, Moeka Yokoyama, Fady Alnajjar, Noriaki Hattori, Koji Takahashi, Takanori Fujii, Hironori Otomune, Ichiro Miyai, Atsushi Yamashita, Hajime Asama:
Analysis of muscle synergy and kinematics in sit-to-stand motion of hemiplegic patients in subacute period. Adv. Robotics 35(13-14): 867-877 (2021) - [j18]Fady Alnajjar, Hassan Umari, Waleed Khalil Ahmed, Munkhjargal Gochoo, Alistair A. Vogan, Adel Al-Jumaily, Peer Mohamad, Shingo Shimoda:
CHAD: Compact Hand-Assistive Device for enhancement of function in hand impairments. Robotics Auton. Syst. 142: 103784 (2021) - [c33]Xie Chen, Qing Shi, Shingo Shimoda, Tao Sun, Huaping Wang, Qiang Huang, Toshio Fukuda:
Micro Robotic Manipulation System for the Force Stimulation of Muscle Fiber-like Cell Structure. ICRA 2021: 7249-7254 - [c32]Shintaro Oyama, Masaomi Saeki, Satoshi Kaneta, Shingo Shimoda, Hidemasa Yoneda, Hitoshi Hirata:
Telerehabilitation Based on Markerless Motion Capture and IMT-2020 (5G) Networks. MedInfo 2021: 1108-1109 - 2020
- [j17]Fady Alnajjar, Ken-Ichi Ozaki, Matti Itkonen, Hiroshi Yamasaki, Masanori Tanimoto, Ikue Ueda, Masaki Kamiya, Maxime Tournier, Chikara Nagai, Álvaro Costa-García, Kensuke Ohno, Aiko Osawa, Izumi Kondo, Shingo Shimoda:
Self-Support Biofeedback Training for Recovery From Motor Impairment After Stroke. IEEE Access 8: 72138-72157 (2020) - [j16]Ningjia Yang, Matti Itkonen, Fady Shibata-Alnajjar, Noriaki Hattori, Makoto Kinomoto, Kouji Takahashi, Takanori Fujii, Hironori Otomune, Ichiro Miyai, Atsushi Yamashita, Hajime Asama, Qi An, Hiroki Kogami, Kazunori Yoshida, Hiroshi Yamakawa, Yusuke Tamura, Shingo Shimoda, Hiroshi Yamasaki, Moeka Sonoo:
Temporal Muscle Synergy Features Estimate Effects of Short-Term Rehabilitation in Sit-to-Stand of Post-Stroke Patients. IEEE Robotics Autom. Lett. 5(2): 1796-1802 (2020) - [j15]Álvaro Costa-García, Eduardo Iáñez, Moeka Sonoo, Shotaro Okajima, Hiroshi Yamasaki, Sayako Ueda, Shingo Shimoda:
Segmentation and Averaging of sEMG Muscle Activations Prior to Synergy Extraction. IEEE Robotics Autom. Lett. 5(2): 3106-3112 (2020)
2010 – 2019
- 2019
- [j14]Shotaro Okajima, Fady S. Alnajjar, Álvaro Costa, Guillermo Asin Prieto, José Luis Pons, Juan C. Moreno, Yasuhisa Hasegawa, Shingo Shimoda:
Theoretical approach for designing the rehabilitation robot controller. Adv. Robotics 33(14): 674-686 (2019) - [c31]Shotaro Okajima, Eduardo Iáñez, Hiroshi Yamasaki, Álvaro Costa-García, Fady S. Alnajjar, Noriaki Hattori, Shingo Shimoda:
Quantification of Extent of Muscle-skin Shifting by Traversal sEMG Analysis Using High-density sEMG Sensor. CBS 2019: 272-277 - 2018
- [j13]Shotaro Okajima, Maxime Tournier, Fady Alnajjar, Mitsuhiro Hayashibe, Yasuhisa Hasegawa, Shingo Shimoda:
Generation of Human-Like Movement from Symbolized Information. Frontiers Neurorobotics 12: 43 (2018) - [j12]Álvaro Costa-García, Matti Itkonen, Hiroshi Yamasaki, Fady Shibata-Alnajjar, Shingo Shimoda:
A Novel Approach to the Segmentation of sEMG Data Based on the Activation and Deactivation of Muscle Synergies During Movement. IEEE Robotics Autom. Lett. 3(3): 1972-1977 (2018) - [j11]Hiroki Kogami, Qi An, Ningjia Yang, Hiroshi Yamakawa, Yusuke Tamura, Atsushi Yamashita, Hajime Asama, Shingo Shimoda, Hiroshi Yamasaki, Matti Itkonen, Fady Shibata-Alnajjar, Noriaki Hattori, Makoto Kinomoto, Kouji Takahashi, Takanori Fujii, Hironori Otomune, Ichiro Miyai:
Effect of Physical Therapy on Muscle Synergy Structure During Standing-Up Motion of Hemiplegic Patients. IEEE Robotics Autom. Lett. 3(3): 2229-2236 (2018) - [j10]Mitsuhiro Hayashibe, Shingo Shimoda:
Synergetic Learning Control Paradigm for Redundant Robot to Enhance Error-Energy Index. IEEE Trans. Cogn. Dev. Syst. 10(3): 573-584 (2018) - [c30]Shotaro Okajima, Fady Shibata-Alnajjar, Hiroshi Yamasaki, Matti Itkonen, Álvaro Costa-García, Yasuhisa Hasegawa, Shingo Shimoda:
Grasp-training Robot to Activate Neural Control Loop for Reflex and Experimental Verification. ICRA 2018: 1849-1854 - [c29]Shotaro Okajima, Fady S. Alnajjar, Yasuhisa Hasegawa, Shingo Shimoda:
Cooperative movement in grasping and development of grasping-training robot. MHS 2018: 1-4 - 2017
- [c28]Álvaro Costa, Matti Itkonen, Hiroshi Yamasaki, Fady Shibata-Alnajjar, Shingo Shimoda:
Importance of muscle selection for EMG signal analysis during upper limb rehabilitation of stroke patients. EMBC 2017: 2510-2513 - [c27]Ningjia Yang, Qi An, Hiroshi Yamakawa, Yusuke Tamura, Atsushi Yamashita, Kouji Takahashi, Makoto Kinomoto, Hiroshi Yamasaki, Matti Itkonen, Fady Shibata-Alnajjar, Shingo Shimoda, Hajime Asama, Noriaki Hattori, Ichiro Miyai:
Clarification of muscle synergy structure during standing-up motion of healthy young, elderly and post-stroke patients. ICORR 2017: 19-24 - [c26]José González-Vargas, Shingo Shimoda, Guillermo Asin Prieto, José Luis Pons, Juan C. Moreno:
Joint stiffness modulation of compliant actuators for lower limb exoskeletons. ICORR 2017: 1287-1292 - 2016
- [j9]Shintaro Oyama, Shingo Shimoda, Fady Alnajjar, Katsuyuki Iwatsuki, Minoru Hoshiyama, Hirotaka Tanaka, Hitoshi Hirata:
Biomechanical Reconstruction Using the Tacit Learning System: Intuitive Control of Prosthetic Hand Rotation. Frontiers Neurorobotics 10: 19 (2016) - [j8]Saugat Bhattacharyya, Shingo Shimoda, Mitsuhiro Hayashibe:
A Synergetic Brain-Machine Interfacing Paradigm for Multi-DOF Robot Control. IEEE Trans. Syst. Man Cybern. Syst. 46(7): 957-968 (2016) - [c25]Alejandro Lopez Rincon, Hiroshi Yamasaki, Shingo Shimoda:
Design of a video game for rehabilitation using motion capture, EMG analysis and virtual reality. CONIELECOMP 2016: 198-204 - [c24]Alejandro Lopez Rincon, César Cantú, Rogelio Soto, Shingo Shimoda:
Simulating the activation, contraction and movement of skeletal muscles using the bidomain model. EMBC 2016: 6042-6045 - [c23]Shotaro Okajima, Shingo Shimoda, Yasuhisa Hasegawa:
Acquisition of adaptive behavior of robot through bow-tie structure. ICDL-EPIROB 2016: 156-157 - 2015
- [c22]Guillermo Asin Prieto, Shingo Shimoda, José González-Vargas, José Luis Pons, Antonio J. del Ama, Ángel Gil-Agudo, Juan C. Moreno:
Testing the Generation of Speed-Dependent Gait Trajectories to Control a 6DoF Overground Exoskeleton. ICIRA (2) 2015: 495-501 - [c21]Joel Viau, Patrick Chouinard, Jean-Philippe Lucking Bigué, Guifre Julio, François Michaud, Shingo Shimoda, Jean-Sébastien Plante:
Projected PID controller for Tendon-Driven Manipulators actuated by magneto-rheological clutches. IROS 2015: 5954-5959 - [c20]Fady S. Alnajjar, Matti Itkonen, Chikara Nagai, Shingo Shimoda:
Sensory synergy: Modeling the neural dynamics of environmental feedback to the central nervous system. NER 2015: 779-782 - [c19]Shingo Shimoda, Álvaro Costa, Guillermo Asin Prieto, Shotaro Okajima, Eduardo Iáñez, Yasuhisa Hasegawa, José Maria Azorín, José Luis Pons, Juan C. Moreno:
Joint Stiffness Tuning of Exoskeleton Robot H2 by Tacit Learning. Symbiotic 2015: 138-144 - [p3]Shingo Shimoda:
Tacit Learning - Machine Learning Paradigm Based on the Principles of Biological Learning. Intelligent Assistive Robots 2015: 213-234 - 2014
- [j7]Mitsuhiro Hayashibe, Shingo Shimoda:
Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning. Frontiers Comput. Neurosci. 8: 21 (2014) - [c18]Vincent Berenz, Mitsuhiro Hayashibe, Fady Alnajjar, Shingo Shimoda:
Generalization of the tacit learning controller based on periodic tuning functions. BioRob 2014: 893-898 - [c17]Juan C. Moreno, Guillermo Asin Prieto, José Luis Pons Rovira, Heidi Cuypers, Bram Vanderborght, Dirk Lefeber, Elena Ceseracciu, Monica Reggiani, F. Thorsteinsson, Antonio J. del Ama, Ángel Gil-Agudo, Shingo Shimoda, Eduardo Iáñez, José Maria Azorín, Javier O. Roa:
Symbiotic Wearable Robotic Exoskeletons: The Concept of the BioMot Project. Symbiotic 2014: 72-83 - 2013
- [j6]Fady Alnajjar, Tytus Wojtara, Hidenori Kimura, Shingo Shimoda:
Muscle synergy space: learning model to create an optimal muscle synergy. Frontiers Comput. Neurosci. 7: 136 (2013) - [j5]Shingo Shimoda, Yuki Yoshihara, Hidenori Kimura:
Adaptability of Tacit Learning in Bipedal Locomotion. IEEE Trans. Auton. Ment. Dev. 5(2): 152-161 (2013) - [c16]Mitsuhiro Hayashibe, Shingo Shimoda:
Emergence of motor synergy in vertical reaching task via tacit learning. EMBC 2013: 4985-4988 - 2012
- [c15]Shingo Shimoda, Yuki Yoshihara, Kenji Fujimoto, Takashi Yamamoto, Iwao Maeda, Hidenori Kimura:
Stability analysis of tacit learning based on environmental signal accumulation. IROS 2012: 2613-2620 - [c14]Shingo Shimoda:
Adaptation? Learning? Features of biological learning. MHS 2012: 406-408 - 2010
- [j4]Shingo Shimoda, Hidenori Kimura:
Biomimetic Approach to Tacit Learning Based on Compound Control. IEEE Trans. Syst. Man Cybern. Part B 40(1): 77-90 (2010) - [c13]Shingo Shimoda, Yuki Yoshihara, Hidenori Kimura:
Emergence of bipedal walking through body/environment interactions. IROS 2010: 1760-1765
2000 – 2009
- 2009
- [j3]Tytus Wojtara, Masafumi Uchihara, Hideyuki Murayama, Shingo Shimoda, Satoshi Sakai, Hideo Fujimoto, Hidenori Kimura:
Human-robot collaboration in precise positioning of a three-dimensional object. Autom. 45(2): 333-342 (2009) - [c12]Reiko J. Tanaka, Lu Gaohua, Shingo Shimoda, Hidenori Kimura:
Compound control - adaptation to multiple environmental changes. CDC 2009: 6183-6188 - [p2]Takashi Kubota, Kei Takahashi, Shingo Shimoda, Tetsuo Yoshimitsu, Ichiro Nakatani:
Locomotion Mechanism of Intelligent Unmanned Explorer for Deep Space Exploration. Intelligent Unmanned Systems 2009: 11-26 - 2008
- [c11]Karl Iagnemma, Shingo Shimoda, Zvi Shiller:
Near-optimal navigation of high speed mobile robots on uneven terrain. IROS 2008: 4098-4103 - [p1]Hidenori Kimura, Shingo Shimoda:
A New Type of Neural Computation. Recent Advances in Learning and Control 2008: 137-147 - 2007
- [j2]Shingo Shimoda, Yoji Kuroda, Karl Iagnemma:
High-speed navigation of unmanned ground vehicles on uneven terrain using potential fields. Robotica 25(4): 409-424 (2007) - 2005
- [c10]Takashi Kubota, Ichiro Nakatani, Keisuke Watanabe, Shingo Shimoda:
Study on Mole-Typed Deep Driller Robot for Subsurface Exploration. ICRA 2005: 1297-1302 - [c9]Shingo Shimoda, Yoji Kuroda, Karl Iagnemma:
Potential Field Navigation of High Speed Unmanned Ground Vehicles on Uneven Terrain. ICRA 2005: 2828-2833 - 2004
- [j1]Shingo Shimoda, Takashi Kubota, Ichiro Nakatani:
Four-Wheeled Hopping Robot with Attitude Control. J. Robotics Mechatronics 16(3): 319-326 (2004) - [c8]Shingo Shimoda, Andreas Wingert, Kei Takahashi, Takashi Kubota, Ichiro Nakatani:
Hopping Direction Controllability for Small Body Exploration Robot. ICRA 2004: 2987-2992 - [c7]Kei Takahashi, Shingo Shimoda, Kojiro Iizuka, Takashi Kubota:
A study of locomotion mechanism based on gravitational environment. IROS 2004: 4001-4006 - 2003
- [c6]Shingo Shimoda, Andreas Wingert, Kei Takahashi, Takashi Kubota, Ichiro Nakatani:
Microgravity hopping robot with controlled hopping and landing capability. IROS 2003: 2571-2576 - [c5]Takashi Kubota, Shingo Shimoda, Tetsuo Yoshimitsu, Ichiro Nakatani:
Small Body Exploration Robot with Hopping Mechanism. Robotics and Applications 2003: 88-93 - 2002
- [c4]Shingo Shimoda, Takashi Kubota, Ichiro Nakatani:
New Mobility System Based on Elastic Energy under Microgravity. ICRA 2002: 2296-2301 - [c3]Shingo Shimoda, Takashi Kubota, Ichiro Nakatani:
New mechanism of attitude control for hopping robot. IROS 2002: 2631-2636 - 2001
- [c2]Shingo Shimoda, Masayuki Ueyama, Shinya Matsuda, Takashi Matsuo, Ken Sasaki, Kiyoshi Itao:
Design of 2-DOF pyramid type ultrasonic motor. IROS 2001: 1971-1976 - 2000
- [c1]Yoshihiko Nakamura, Shingo Shimoda, Sanefumi Shoji:
Mobility of a microgravity rover using internal electro-magnetic levitation. IROS 2000: 1639-1645
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:10 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint