default search action
William B. Levy
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j51]William B. Levy, Robert A. Baxter:
Growing dendrites enhance a neuron's computational power and memory capacity. Neural Networks 164: 275-309 (2023) - 2020
- [j50]Robert A. Baxter, William B. Levy:
Constructing multilayered neural networks with sparse, data-driven connectivity using biologically-inspired, complementary, homeostatic mechanisms. Neural Networks 122: 68-93 (2020)
2010 – 2019
- 2019
- [c12]Robert A. Baxter, William B. Levy:
Multilayered Neural Networks With Sparse, Data-driven Connectivity and Balanced Information and Energy Efficiency. CISS 2019: 1-6 - 2018
- [j49]Danielle Morel, Chandan Singh, William B. Levy:
Linearization of excitatory synaptic integration at no extra cost. J. Comput. Neurosci. 44(2): 173-188 (2018) - 2017
- [j48]Harang Ju, Costa M. Colbert, William B. Levy:
Limited synapse overproduction can speed development but sometimes with long-term energy and discrimination penalties. PLoS Comput. Biol. 13(9) (2017) - [c11]Mustafa Sungkar, Toby Berger, William B. Levy:
Capacity achieving input distribution to the generalized inverse Gaussian neuron model. Allerton 2017: 860-869 - 2016
- [j47]William B. Levy, Toby Berger, Mustafa Sungkar:
Neural Computation From First Principles: Using the Maximum Entropy Method to Obtain an Optimal Bits-Per-Joule Neuron. IEEE Trans. Mol. Biol. Multi Scale Commun. 2(2): 154-165 (2016) - [j46]Mustafa Sungkar, Toby Berger, William B. Levy:
Mutual Information and Parameter Estimation in the Generalized Inverse Gaussian Diffusion Model of Cortical Neurons. IEEE Trans. Mol. Biol. Multi Scale Commun. 2(2): 166-182 (2016) - [c10]William B. Levy, Harang Ju, Robert A. Baxter, Costa M. Colbert:
Controlling information flow and energy use via adaptive synaptogenesis. CISS 2016: 535-538 - 2015
- [j45]Blake T. Thomas, Davis W. Blalock, William B. Levy:
Adaptive Synaptogenesis Constructs Neural Codes That Benefit Discrimination. PLoS Comput. Biol. 11(7) (2015) - [j44]Jie Xing, Toby Berger, Mustafa Sungkar, William B. Levy:
Energy Efficient Neurons With Generalized Inverse Gaussian Conditional and Marginal Hitting Times. IEEE Trans. Inf. Theory 61(8): 4390-4398 (2015) - 2012
- [c9]William B. Levy, Toby Berger:
Design principles and specifications for neural-like computation under constraints on information preservation and energy costs as analyzed with statistical theory. ISIT 2012: 2969-2972 - 2011
- [c8]Toby Berger, William B. Levy, Jie Xing:
Energy efficient neurons with generalized inverse Gaussian interspike interval durations. Allerton 2011: 1737-1742 - 2010
- [j43]Toby Berger, William B. Levy:
A mathematical theory of energy efficient neural computation and communication. IEEE Trans. Inf. Theory 56(2): 852-874 (2010)
2000 – 2009
- 2009
- [j42]Danielle Morel, William B. Levy:
The cost of linearization. J. Comput. Neurosci. 27(2): 259-275 (2009) - [c7]William B. Levy, Kai S. Chang, Andrew G. Howe:
Progressively introducing quantified biological complexity into a hippocampal CA3 model. IJCNN 2009: 1777-1783 - [c6]Toby Berger, William B. Levy:
Information transfer by energy-efficient neurons. ISIT 2009: 1584-1588 - 2007
- [j41]Danielle Morel, William B. Levy:
Persistent sodium is a better linearizing mechanism than the hyperpolarization-activated current. Neurocomputing 70(10-12): 1635-1639 (2007) - [j40]Patrick Crotty, William B. Levy:
Effects of Na+ channel inactivation kinetics on metabolic energy costs of action potentials. Neurocomputing 70(10-12): 1652-1656 (2007) - [j39]Ashlie B. Hocking, William B. Levy:
Theta-modulated input reduces intrinsic gamma oscillations in a hippocampal model. Neurocomputing 70(10-12): 2074-2078 (2007) - 2006
- [j38]Patrick Crotty, William B. Levy:
Intersymbol interference in axonal transmission. Neurocomputing 69(10-12): 1006-1009 (2006) - [j37]William B. Levy, Xiangbao Wu:
External activity and the freedom to recode. Neurocomputing 69(10-12): 1233-1237 (2006) - [j36]Xiangbao Wu, William B. Levy:
Decision functions that can support a hippocampal model. Neurocomputing 69(10-12): 1238-1243 (2006) - [j35]Ashlie B. Hocking, William B. Levy:
Gamma oscillations in a minimal CA3 model. Neurocomputing 69(10-12): 1244-1248 (2006) - [j34]William B. Levy, Ashlie B. Hocking, Xiangbao Wu:
Erratum to: Interpreting hippocampal function as recoding and forecasting [Neural Networks 18 (9) 1242-1264]. Neural Networks 19(2): 248 (2006) - [c5]William B. Levy, Danielle Morel:
A Bayesian Constraint on Neural Computation. ISIT 2006: 655-658 - 2005
- [j33]William B. Levy, A. Sanyal, Xiangbao Wu, Paul Rodríguez, David W. Sullivan:
The formation of neural codes in the hippocampus: trace conditioning as a prototypical paradigm for studying the random recoding hypothesis. Biol. Cybern. 92(6): 409-426 (2005) - [j32]Xiangbao Wu, William B. Levy:
Increasing CS and US longevity increases the learnable trace interval. Neurocomputing 65-66: 283-289 (2005) - [j31]Ashlie B. Hocking, William B. Levy:
Computing conditional probabilities in a minimal CA3 pyramidal neuron. Neurocomputing 65-66: 297-303 (2005) - [j30]David W. Sullivan, William B. Levy:
Activity affects trace conditioning performance in a minimal hippocampal model. Neurocomputing 65-66: 315-321 (2005) - [j29]Patrick Crotty, William B. Levy:
Energy-efficient interspike interval codes. Neurocomputing 65-66: 371-378 (2005) - [j28]Joanna Tyrcha, William B. Levy:
Synaptic failures and a Gaussian excitation distribution. Neurocomputing 65-66: 891-899 (2005) - [j27]Thomas Sangrey, William B. Levy:
Conduction velocity costs energy. Neurocomputing 65-66: 907-913 (2005) - [j26]Xiangbao Wu, William B. Levy:
Erratum to 'Increasing CS and US longevity increases the learnable trace interval' by X. Wu and W.B. Levy: [Neurocomputing 65-66 (2005) 283-289]. Neurocomputing 68: 322 (2005) - [j25]William B. Levy, Ashlie B. Hocking, Xiangbao Wu:
Interpreting hippocampal function as recoding and forecasting. Neural Networks 18(9): 1242-1264 (2005) - 2004
- [j24]Joanna Tyrcha, William B. Levy:
Another contribution by synaptic failures to energy efficient processing by neurons. Neurocomputing 58-60: 59-66 (2004) - [j23]William B. Levy:
Contrasting rules for synaptogenesis, modification of existing synapses, and synaptic removal as a function of neuronal computation. Neurocomputing 58-60: 343-350 (2004) - [j22]Paul Rodríguez, William B. Levy:
Configural representations in transverse patterning with a hippocampal model. Neural Networks 17(2): 175-190 (2004) - 2003
- [j21]William B. Levy, Xiangbao Wu, Anthony J. Greene, Barbara A. Spellman:
A source of individual variation. Neurocomputing 52-54: 165-168 (2003) - [j20]David W. Sullivan, William B. Levy:
Quantal synaptic failures improve performance in a sequence learning model of hippocampal CA3. Neurocomputing 52-54: 397-401 (2003) - 2002
- [j19]Xiangbao Wu, William B. Levy:
Simulating the transverse non-patterning problem. Neurocomputing 44-46: 1029-1034 (2002) - 2001
- [j18]Sean Polyn, William B. Levy:
Dynamic control of inhibition improves performance of a hippocampal model. Neurocomputing 38-40: 823-829 (2001) - [j17]Xiangbao Wu, William B. Levy:
Simulating symbolic distance effects in the transitive inference problem. Neurocomputing 38-40: 1603-1610 (2001) - 2000
- [j16]Sean Polyn, Xiangbao Wu, William B. Levy:
Entorhinal/dentate excitation of CA3: A critical variable in hippocampal models. Neurocomputing 32-33: 493-499 (2000) - [j15]Aaron P. Shon, Xiangbao Wu, William B. Levy:
Using computational simulations to discover optimal training paradigms. Neurocomputing 32-33: 995-1002 (2000)
1990 – 1999
- 1999
- [j14]William B. Levy, Hakan Deliç, Dawn M. Adelsberger-Mangan:
The statistical relationship between connectivity and neural activity in fractionally connected feed-forward networks. Biol. Cybern. 80(2): 131-139 (1999) - [j13]Xiangbao Wu, William B. Levy:
Enhancing the performance of a hippocampal model by increasing variability early in learning. Neurocomputing 26-27: 601-607 (1999) - [j12]D. A. August, William B. Levy:
Temporal Sequence Compression by an Integrate-and-Fire Model of Hippocampal Area CA3. J. Comput. Neurosci. 6(1): 71-90 (1999) - 1998
- [j11]Xiangbao Wu, Joanna Tyrcha, William B. Levy:
A neural network solution to the transverse patterning problem depends on repetition of the input code. Biol. Cybern. 79(3): 203-213 (1998) - [j10]Asohan Amarasingham, William B. Levy:
Predicting the Distribution of Synaptic Strengths in a Self-Organizing, Sequence Prediction Model. Neural Comput. 10(1): 25-58 (1998) - 1997
- [c4]William B. Levy, Xiangbao Wu:
A simple, biologically motivated neural network solves the transitive inference problem. ICNN 1997: 368-371 - [c3]William B. Levy, Per B. Sederberg:
A neural network model of hippocampally mediated trace conditioning. ICNN 1997: 372-376 - 1996
- [j9]Xiangbao Wu, Robert A. Baxter, William B. Levy:
Context codes and the effect of noisy learning on a simplified hippocampal CA3 model. Biol. Cybern. 74(2): 159-165 (1996) - [j8]D. A. August, William B. Levy:
A simple spike train decoder inspired by the sampling theorem. Neural Comput. 8(1): 67-84 (1996) - [j7]William B. Levy, Rohan A. Baxter:
Energy efficient neural codes. Neural Comput. 8(3): 531-543 (1996) - 1994
- [j6]Dawn M. Adelsberger-Mangan, William B. Levy:
The influence of limited presynaptic growth and synapse removal on adaptive synaptogenesis. Biol. Cybern. 71(5): 461-468 (1994) - [j5]Ali A. Minai, William B. Levy:
Setting the Activity Level in Sparse Random Networks. Neural Comput. 6(1): 85-99 (1994) - [j4]William B. Levy, Hakan Deliç:
Maximum entropy aggregation of individual opinions. IEEE Trans. Syst. Man Cybern. 24(4): 606-613 (1994) - 1993
- [j3]Dawn M. Adelsberger-Mangan, William B. Levy:
Adaptive synaptogenesis constructs networks that maintain information and reduce statistical dependence. Biol. Cybern. 70(1): 81-87 (1993) - [j2]Ali A. Minai, William B. Levy:
The dynamics of sparse random networks. Biol. Cybern. 70(2): 177-187 (1993) - 1992
- [j1]Dawn M. Adelsberger-Mangan, William B. Levy:
Information maintenance and statistical dependence reduction in simple neural networks. Biol. Cybern. 67(5): 469-477 (1992) - [c2]Ali A. Minai, William B. Levy:
Predicting Complex Behavior in Sparse Asymmetric Networks. NIPS 1992: 556-563
1980 – 1989
- 1988
- [c1]Shailesh U. Hegde, Jeffrey L. Swee, William B. Levy:
Determination of parameters in a Hopfield/Tank computational network. ICNN 1988: 291-298
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:21 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint