Periodische Fortsetzung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Mathematik, insbesondere in der Fourier-Analysis, ist die periodische Fortsetzung oder Periodisierung[1] eine Operation, mit der eine Funktion, die nur in einem bestimmten Intervall definiert ist, periodisch wird.

Ein Anwendungsfall sind Fourierreihen, die nur für periodische Funktionen definiert sind. Um sie auch für nicht periodische Funktionen anwenden zu können, muss man sie periodisieren.

Sei eine Funktion mit .

Dann ist die Periodisierung von definiert als:

.

heißt Periode von und bezeichnet die Abrundungsfunktion.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Michael Knorrenschild: Mathematik für Ingenieure 2. Angewandte Analysis im Bachelorstudium. Carl Hanser Verlag, München 2014, ISBN 978-3-446-41347-4, S. 178.