x
n
{\displaystyle {\sqrt[{n}]{x}}}
Diese Formelsammlung fasst Formeln und Definitionen der Tensoralgebra für Tensoren zweiter Stufe in der Kontinuumsmechanik zusammen. Es wird der dreidimensionale Raum zugrunde gelegt.
Operatoren wie
I
1
{\displaystyle \mathrm {I} _{1}}
werden nicht kursiv geschrieben.
Buchstaben die als Indizes benutzt werden:
i
,
j
,
k
,
l
,
m
,
n
∈
{
1
,
2
,
3
}
{\displaystyle i,j,k,l,m,n\in \{1,2,3\}}
. Ausnahme: Die imaginäre Einheit
i
2
=
−
1
{\displaystyle \mathrm {i} ^{2}=-1}
und die #Vektorinvariante
i
→
{\displaystyle {\vec {\mathrm {i} }}}
werden in Abgrenzung zu den Indizes nicht kursiv geschrieben.
p
,
q
,
r
,
s
∈
{
1
,
2
,
…
,
9
}
{\displaystyle p,q,r,s\in \{1,2,\ldots ,9\}}
u
,
v
∈
{
1
,
2
,
…
,
6
}
{\displaystyle u,v\in \{1,2,\ldots ,6\}}
Alle anderen Buchstaben stehen für reelle Zahlen oder komplexe Zahlen .
Vektoren:
Alle hier verwendeten Vektoren sind geometrische Vektoren im dreidimensionalen euklidischen Vektorraum
V
{\displaystyle \mathbb {V} }
.
Vektoren werden mit Kleinbuchstaben bezeichnet. Ausnahme #Dualer axialer Vektor
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
Einheitsvektoren mit Länge eins werden wie in ê mit einem Hut versehen. Die Standardbasis von
V
{\displaystyle \mathbb {V} }
ist ê1,2,3 .
Vektoren mit unbestimmter Länge werden wie in
a
→
{\displaystyle {\vec {a}}}
mit einem Pfeil versehen.
Dreiergruppen von Vektoren wie in
h
→
1
,
h
→
2
,
h
→
3
{\displaystyle {\vec {h}}_{1},{\vec {h}}_{2},{\vec {h}}_{3}}
oder
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
bezeichnen eine rechtshändige Basis von
V
{\displaystyle \mathbb {V} }
.
Gleichnamige Basisvektoren mit unterem und oberem Index sind dual zueinander, z. B.
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3}}
ist dual zu
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
.
Tensoren zweiter Stufe werden wie in A mit fetten Großbuchstaben notiert. Die Menge aller Tensoren wird mit
L
:=
L
i
n
(
V
,
V
)
{\displaystyle {\mathcal {L}}:=\mathrm {Lin} (\mathbb {V} ,\mathbb {V} )}
bezeichnet. Tensoren höherer Stufe werden mit einer hochgestellten Zahl wie in
C
4
{\displaystyle {\stackrel {4}{\mathbf {C} }}}
geschrieben. Tensoren vierter Stufe sind Elemente der Menge
L
4
:=
L
i
n
(
L
,
L
)
{\displaystyle {\stackrel {4}{\mathcal {L}}}:=\mathrm {Lin} ({\mathcal {L}},{\mathcal {L}})}
.
Es gilt die Einstein'sche Summenkonvention ohne Beachtung der Indexstellung.
Kommt in einer Formel in einem Produkt ein Index doppelt vor wie in
c
=
a
i
b
i
{\displaystyle c=a_{i}b^{i}}
wird über diesen Index summiert:
c
=
a
i
b
i
=
∑
i
=
1
3
a
i
b
i
{\displaystyle c=a_{i}b^{i}=\sum _{i=1}^{3}a_{i}b^{i}}
.
Kommen mehrere Indizes doppelt vor wie in
c
=
A
p
q
B
q
p
{\displaystyle c=A_{pq}B_{q}^{p}}
wird über diese summiert:
c
=
A
p
q
B
q
p
=
∑
p
=
1
9
∑
q
=
1
9
A
p
q
B
q
p
{\displaystyle c=A_{pq}B_{q}^{p}=\sum _{p=1}^{9}\sum _{q=1}^{9}A_{pq}B_{q}^{p}}
.
Ein Index, der nur einfach vorkommt wie
u
{\displaystyle u}
in
a
u
=
A
u
v
b
v
{\displaystyle a_{u}=A_{uv}b_{v}}
, ist ein freier Index. Die Formel gilt dann für alle Werte der freien Indizes:
a
u
=
A
u
v
b
v
↔
a
u
=
∑
v
=
1
6
A
u
v
b
v
∀
u
∈
{
1
,
…
,
6
}
{\displaystyle a_{u}=A_{uv}b_{v}\quad \leftrightarrow \quad a_{u}=\sum _{v=1}^{6}A_{uv}b_{v}\quad \forall \;u\in \{1,\ldots ,6\}}
.
Formelzeichen
Abschnitt in der Formelsammlung
Wikipedia-Artikel
S
p
,
t
r
,
I
1
{\displaystyle \mathrm {Sp,tr,I} _{1}}
#Spur
Spur (Mathematik) , Hauptinvariante
I
2
{\displaystyle \mathrm {I} _{2}}
#Zweite Hauptinvariante
Hauptinvariante
d
e
t
,
I
3
,
|
A
|
{\displaystyle \mathrm {det,I} _{3},|\mathbf {A} |}
#Determinante
Determinante , Hauptinvariante
sym
#Symmetrischer Anteil
Symmetrische Matrix
skw, skew
#Schiefsymmetrischer Anteil
Schiefsymmetrische Matrix
adj
#Adjunkte
Adjunkte
cof
#Kofaktor
Minor (Mathematik)#Kofaktormatrix
dev
#Deviator
Deviator , Spannungsdeviator
sph
#Kugelanteil
Kugeltensor
Formelzeichen
Elemente
R
{\displaystyle \mathbb {R} }
Reelle Zahlen
C
{\displaystyle \mathbb {C} }
Komplexe Zahlen
V
{\displaystyle \mathbb {V} }
Vektoren
L
=
L
i
n
(
V
,
V
)
{\displaystyle {\mathcal {L}}=\mathrm {Lin} (\mathbb {V,V} )}
Tensoren zweiter Stufe
L
4
=
L
i
n
(
L
,
L
)
{\displaystyle {\stackrel {4}{\mathcal {L}}}=\mathrm {Lin} ({\mathcal {L,L}})}
#Tensoren vierter Stufe
δ
i
j
=
δ
i
j
=
δ
i
j
=
δ
j
i
=
{
1
f
a
l
l
s
i
=
j
0
s
o
n
s
t
{\displaystyle \delta _{ij}=\delta ^{ij}=\delta _{i}^{j}=\delta _{j}^{i}={\begin{cases}1&\mathrm {falls} \quad i=j\\0&\mathrm {sonst} \end{cases}}}
Für Summen gilt dann z. B.
v
i
δ
i
j
=
v
j
{\displaystyle v_{i}\delta _{ij}=v_{j}}
A
i
j
δ
i
j
=
A
i
i
{\displaystyle A_{ij}\delta _{ij}=A_{ii}}
Dies gilt für die anderen Indexgruppen entsprechend.
ϵ
i
j
k
=
e
^
i
⋅
(
e
^
j
×
e
^
k
)
=
{
1
falls
(
i
,
j
,
k
)
∈
{
(
1
,
2
,
3
)
,
(
2
,
3
,
1
)
,
(
3
,
1
,
2
)
}
−
1
falls
(
i
,
j
,
k
)
∈
{
(
1
,
3
,
2
)
,
(
2
,
1
,
3
)
,
(
3
,
2
,
1
)
}
0
sonst, d.h. bei doppeltem Index
{\displaystyle \epsilon _{ijk}={\hat {e}}_{i}\cdot ({\hat {e}}_{j}\times {\hat {e}}_{k})={\begin{cases}1&{\text{falls}}\;(i,j,k)\in \{(1,2,3),(2,3,1),(3,1,2)\}\\-1&{\text{falls}}\;(i,j,k)\in \{(1,3,2),(2,1,3),(3,2,1)\}\\0&{\text{sonst, d.h. bei doppeltem Index}}\end{cases}}}
ϵ
i
j
k
ϵ
l
m
n
=
|
δ
i
l
δ
j
l
δ
k
l
δ
i
m
δ
j
m
δ
k
m
δ
i
n
δ
j
n
δ
k
n
|
{\displaystyle \epsilon _{ijk}\epsilon _{lmn}={\begin{vmatrix}\delta _{il}&\delta _{jl}&\delta _{kl}\\\delta _{im}&\delta _{jm}&\delta _{km}\\\delta _{in}&\delta _{jn}&\delta _{kn}\end{vmatrix}}}
ϵ
i
j
k
ϵ
k
l
m
=
δ
i
l
δ
j
m
−
δ
i
m
δ
j
l
{\displaystyle \epsilon _{ijk}\epsilon _{klm}=\delta _{il}\delta _{jm}-\delta _{im}\delta _{jl}}
ϵ
i
j
k
ϵ
j
k
l
=
2
δ
i
l
{\displaystyle \epsilon _{ijk}\epsilon _{jkl}=2\delta _{il}}
ϵ
i
j
k
ϵ
i
j
k
=
6
{\displaystyle \epsilon _{ijk}\epsilon _{ijk}=6}
Kreuzprodukt:
a
i
e
^
i
×
b
j
e
^
j
=
ϵ
i
j
k
a
i
b
j
e
^
k
=
ϵ
i
j
k
a
j
b
k
e
^
i
=
ϵ
i
j
k
a
k
b
i
e
^
j
{\displaystyle a_{i}{\hat {e}}_{i}\times b_{j}{\hat {e}}_{j}=\epsilon _{ijk}a_{i}b_{j}{\hat {e}}_{k}=\epsilon _{ijk}a_{j}b_{k}{\hat {e}}_{i}=\epsilon _{ijk}a_{k}b_{i}{\hat {e}}_{j}}
ϵ
i
j
k
e
^
k
=
e
^
i
×
e
^
j
{\displaystyle \epsilon _{ijk}{\hat {e}}_{k}={\hat {e}}_{i}\times {\hat {e}}_{j}}
Die hier verwendeten Vektoren sind Spaltenvektoren
a
→
=
a
i
e
^
i
=
(
a
1
a
2
a
3
)
{\displaystyle {\vec {a}}=a_{i}{\hat {e}}_{i}={\begin{pmatrix}a_{1}\\a_{2}\\a_{3}\end{pmatrix}}}
Drei Vektoren
a
→
,
b
→
,
c
→
{\displaystyle {\vec {a}},{\vec {b}},{\vec {c}}}
können spaltenweise in einer 3×3-Matrix
M
{\displaystyle M}
arrangiert werden:
M
=
(
a
→
b
→
c
→
)
=
(
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
)
{\displaystyle M={\begin{pmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{pmatrix}}={\begin{pmatrix}a_{1}&b_{1}&c_{1}\\a_{2}&b_{2}&c_{2}\\a_{3}&b_{3}&c_{3}\end{pmatrix}}}
Die Determinante der Matrix
|
M
|
=
|
a
→
b
→
c
→
|
{\displaystyle |M|={\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}}
ist
Also gewährleistet
|
a
→
b
→
c
→
|
>
0
{\displaystyle {\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}>0}
, dass die Vektoren
a
→
,
b
→
,
c
→
{\displaystyle {\vec {a}},{\vec {b}},{\vec {c}}}
eine rechtshändige Basis bilden.
Die Spaltenvektoren bilden eine Orthonormalbasis , wenn
M
⊤
M
=
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle M^{\top }M={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
worin
M
⊤
{\displaystyle M^{\top }}
die transponierte Matrix ist. Bei der hier vorausgesetzten Rechtshändigkeit gilt dann zusätzlich
|
M
|
=
+
1
{\displaystyle |M|=+1}
.
Basisvektoren
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3}}
Duale Basisvektoren
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
Beziehungen zwischen den Basisvektoren
g
→
i
⋅
g
→
j
=
δ
i
j
{\displaystyle {\vec {g}}_{i}\cdot {\vec {g}}^{j}=\delta _{i}^{j}}
g
→
1
=
g
→
2
×
g
→
3
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
2
=
g
→
3
×
g
→
1
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
3
=
g
→
1
×
g
→
2
(
g
→
1
,
g
→
2
,
g
→
3
)
{\displaystyle {\vec {g}}^{1}={\frac {{\vec {g}}_{2}\times {\vec {g}}_{3}}{({\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3})}},\quad g^{2}={\frac {{\vec {g}}_{3}\times {\vec {g}}_{1}}{({\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3})}},\quad g^{3}={\frac {{\vec {g}}_{1}\times {\vec {g}}_{2}}{({\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3})}}}
g
→
1
=
g
→
2
×
g
→
3
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
2
=
g
→
3
×
g
→
1
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
3
=
g
→
1
×
g
→
2
(
g
→
1
,
g
→
2
,
g
→
3
)
{\displaystyle {\vec {g}}_{1}={\frac {{\vec {g}}^{2}\times {\vec {g}}^{3}}{({\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3})}},\quad g_{2}={\frac {{\vec {g}}^{3}\times {\vec {g}}^{1}}{({\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3})}},\quad g_{3}={\frac {{\vec {g}}^{1}\times {\vec {g}}^{2}}{({\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3})}}}
mit dem Spatprodukt
(
a
→
,
b
→
,
c
→
)
:=
a
→
⋅
(
b
→
×
c
→
)
=
c
→
⋅
(
a
→
×
b
→
)
=
b
→
⋅
(
c
→
×
a
→
)
=
|
a
→
b
→
c
→
|
{\displaystyle ({\vec {a}},{\vec {b}},{\vec {c}}):={\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})={\vec {c}}\cdot ({\vec {a}}\times {\vec {b}})={\vec {b}}\cdot ({\vec {c}}\times {\vec {a}})={\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}}
Trägt man die Basisvektoren spaltenweise in eine Matrix ein, dann finden sich die dualen Basisvektoren in den Zeilen der Inversen oder den Spalten der #transponiert #Inversen
(
)
⊤
−
1
{\displaystyle ()^{\top -1}}
:
(
g
→
1
g
→
2
g
→
3
)
=
(
g
→
1
g
→
2
g
→
3
)
⊤
−
1
{\displaystyle {\begin{pmatrix}{\vec {g}}^{1}&{\vec {g}}^{2}&{\vec {g}}^{3}\end{pmatrix}}={\begin{pmatrix}{\vec {g}}_{1}&{\vec {g}}_{2}&{\vec {g}}_{3}\end{pmatrix}}^{\top -1}}
In der Standardbasis wie in jeder Orthonormalbasis sind die Basisvektoren
e
^
1
,
e
^
2
,
e
^
3
{\displaystyle {\hat {e}}_{1},{\hat {e}}_{2},{\hat {e}}_{3}}
zu sich selbst dual:
e
^
i
=
e
^
i
{\displaystyle {\hat {e}}_{i}={\hat {e}}^{i}}
v
→
=
v
i
e
^
i
→
v
i
=
v
→
⋅
e
^
i
{\displaystyle {\vec {v}}=v_{i}{\hat {e}}_{i}\quad \rightarrow \;v_{i}={\vec {v}}\cdot {\hat {e}}_{i}}
v
→
=
v
i
g
→
i
→
v
i
=
v
→
⋅
g
→
i
{\displaystyle {\vec {v}}=v^{i}{\vec {g}}_{i}\quad \rightarrow \;v^{i}={\vec {v}}\cdot {\vec {g}}^{i}}
v
→
=
v
i
g
→
i
→
v
i
=
v
→
⋅
g
→
i
{\displaystyle {\vec {v}}=v_{i}{\vec {g}}^{i}\quad \rightarrow \;v_{i}={\vec {v}}\cdot {\vec {g}}_{i}}
Beziehung zwischen den Skalarprodukten der Basisvektoren
Bearbeiten
(
g
→
i
⋅
g
→
k
)
(
g
→
k
⋅
g
→
j
)
=
g
→
i
⋅
(
g
→
j
⋅
g
→
k
)
g
→
k
=
g
→
i
⋅
g
→
j
=
δ
i
j
{\displaystyle ({\vec {g}}_{i}\cdot {\vec {g}}_{k})({\vec {g}}^{k}\cdot {\vec {g}}^{j})={\vec {g}}_{i}\cdot ({\vec {g}}^{j}\cdot {\vec {g}}^{k}){\vec {g}}_{k}={\vec {g}}_{i}\cdot {\vec {g}}^{j}=\delta _{i}^{j}}
Wechsel von
Basis
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
mit dualer Basis
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3}}
nach
Basis
h
→
1
,
h
→
2
,
h
→
3
{\displaystyle {\vec {h}}^{1},{\vec {h}}^{2},{\vec {h}}^{3}}
mit dualer Basis
h
→
1
,
h
→
2
,
h
→
3
{\displaystyle {\vec {h}}_{1},{\vec {h}}_{2},{\vec {h}}_{3}}
:
v
→
=
v
i
g
→
i
=
v
i
∗
h
→
i
→
v
i
∗
=
(
h
→
i
⋅
g
→
j
)
v
j
{\displaystyle {\vec {v}}=v_{i}\,{\vec {g}}^{i}=v_{i}^{\ast }\,{\vec {h}}^{i}\quad \rightarrow \;v_{i}^{\ast }=({\vec {h}}_{i}\cdot {\vec {g}}^{j})v_{j}}
Matrizengleichung:
(
v
1
∗
v
2
∗
v
3
∗
)
=
(
h
→
1
⋅
g
→
1
h
→
1
⋅
g
→
2
h
→
1
⋅
g
→
3
h
→
2
⋅
g
→
1
h
→
2
⋅
g
→
2
h
→
2
⋅
g
→
3
h
→
3
⋅
g
→
1
h
→
3
⋅
g
→
2
h
→
3
⋅
g
→
3
)
(
v
1
v
2
v
3
)
=
(
h
→
1
h
→
2
h
→
3
)
⊤
(
g
→
1
g
→
2
g
→
3
)
(
v
1
v
2
v
3
)
{\displaystyle {\begin{aligned}{\begin{pmatrix}v_{1}^{\ast }\\v_{2}^{\ast }\\v_{3}^{\ast }\end{pmatrix}}=&{\begin{pmatrix}{\vec {h}}_{1}\cdot {\vec {g}}^{1}&{\vec {h}}_{1}\cdot {\vec {g}}^{2}&{\vec {h}}_{1}\cdot {\vec {g}}^{3}\\{\vec {h}}_{2}\cdot {\vec {g}}^{1}&{\vec {h}}_{2}\cdot {\vec {g}}^{2}&{\vec {h}}_{2}\cdot {\vec {g}}^{3}\\{\vec {h}}_{3}\cdot {\vec {g}}^{1}&{\vec {h}}_{3}\cdot {\vec {g}}^{2}&{\vec {h}}_{3}\cdot {\vec {g}}^{3}\end{pmatrix}}{\begin{pmatrix}v_{1}\\v_{2}\\v_{3}\end{pmatrix}}\\=&{\begin{pmatrix}{\vec {h}}_{1}&{\vec {h}}_{2}&{\vec {h}}_{3}\end{pmatrix}}^{\top }{\begin{pmatrix}{\vec {g}}^{1}&{\vec {g}}^{2}&{\vec {g}}^{3}\end{pmatrix}}{\begin{pmatrix}v_{1}\\v_{2}\\v_{3}\end{pmatrix}}\end{aligned}}}
Die grundlegenden Eigenschaften des dyadischen Produkts „⊗“ sind:
Abbildung
V
×
V
→
L
{\displaystyle \mathbb {V} \times \mathbb {V} \to {\mathcal {L}}}
a
→
⊗
g
→
=
T
∈
L
{\displaystyle {\vec {a}}\otimes {\vec {g}}=\mathbf {T} \in {\mathcal {L}}}
Multiplikation mit einem Skalar:
x
(
a
→
⊗
g
→
)
=
(
x
a
→
)
⊗
g
→
=
a
→
⊗
(
x
g
→
)
=
x
a
→
⊗
g
→
{\displaystyle x({\vec {a}}\otimes {\vec {g}})=(x{\vec {a}})\otimes {\vec {g}}={\vec {a}}\otimes (x{\vec {g}})=x{\vec {a}}\otimes {\vec {g}}}
Distributivität:
(
x
+
y
)
a
→
⊗
g
→
=
x
a
→
⊗
g
→
+
y
a
→
⊗
g
→
{\displaystyle (x+y){\vec {a}}\otimes {\vec {g}}=x{\vec {a}}\otimes {\vec {g}}+y{\vec {a}}\otimes {\vec {g}}}
(
a
→
+
b
→
)
⊗
g
→
=
a
→
⊗
g
→
+
b
→
⊗
g
→
{\displaystyle ({\vec {a}}+{\vec {b}})\otimes {\vec {g}}={\vec {a}}\otimes {\vec {g}}+{\vec {b}}\otimes {\vec {g}}}
a
→
⊗
(
g
→
+
h
→
)
=
a
→
⊗
g
→
+
a
→
⊗
h
→
{\displaystyle {\vec {a}}\otimes ({\vec {g}}+{\vec {h}})={\vec {a}}\otimes {\vec {g}}+{\vec {a}}\otimes {\vec {h}}}
Skalarprodukt :
(
a
→
⊗
g
→
)
:
(
b
→
⊗
h
→
)
=
(
a
→
⋅
b
→
)
(
g
→
⋅
h
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}}):({\vec {b}}\otimes {\vec {h}})=({\vec {a}}\cdot {\vec {b}})({\vec {g}}\cdot {\vec {h}})}
Weitere Eigenschaften von Dyaden siehe #Dyade und den folgenden Abschnitt.
Tensoren als Elemente eines Vektorraumes
Bearbeiten
Durch die Eigenschaften des dyadischen Produktes wird
L
{\displaystyle {\mathcal {L}}}
zu einem euklidischen Vektorraum und entsprechend kann jeder Tensor komponentenweise bezüglich einer Basis von
L
{\displaystyle {\mathcal {L}}}
dargestellt werden:
A
∈
L
→
A
=
A
i
j
e
^
i
⊗
e
^
j
=
A
i
j
a
→
i
⊗
g
→
j
{\displaystyle \mathbf {A} \in {\mathcal {L}}\rightarrow \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}=A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j}}
mit Komponenten
A
i
j
,
A
i
j
∈
R
{\displaystyle A_{ij},A^{ij}\in \mathbb {R} }
.
Die Dyaden
{
e
^
i
⊗
e
^
j
|
i
,
j
=
1
,
2
,
3
}
{\displaystyle \{{\hat {e}}_{i}\otimes {\hat {e}}_{j}|i,j=1,2,3\}}
und
{
a
→
i
⊗
g
→
j
|
i
,
j
=
1
,
2
,
3
}
{\displaystyle \{{\vec {a}}_{i}\otimes {\vec {g}}_{j}|i,j=1,2,3\}}
bilden Basissysteme von
L
{\displaystyle {\mathcal {L}}}
.
Abbildung
L
→
L
{\displaystyle {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
⊤
:=
g
→
⊗
a
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})^{\top }:={\vec {g}}\otimes {\vec {a}}}
(
A
i
j
e
^
i
⊗
e
^
j
)
⊤
=
A
i
j
(
e
^
j
⊗
e
^
i
)
=
A
j
i
(
e
^
i
⊗
e
^
j
)
{\displaystyle (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})^{\top }=A_{ij}({\hat {e}}_{j}\otimes {\hat {e}}_{i})=A_{ji}({\hat {e}}_{i}\otimes {\hat {e}}_{j})}
(
A
i
j
a
→
i
⊗
g
→
j
)
⊤
=
A
i
j
(
g
→
j
⊗
a
→
i
)
=
A
j
i
(
g
→
i
⊗
a
→
j
)
{\displaystyle (A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j})^{\top }=A^{ij}({\vec {g}}_{j}\otimes {\vec {a}}_{i})=A^{ji}({\vec {g}}_{i}\otimes {\vec {a}}_{j})}
(
A
⊤
)
⊤
=
A
{\displaystyle \left(\mathbf {A} ^{\top }\right)^{\top }=\mathbf {A} }
(
A
+
B
)
⊤
=
A
⊤
+
B
⊤
{\displaystyle (\mathbf {A+B} )^{\top }=\mathbf {A} ^{\top }+\mathbf {B} ^{\top }}
(
A
⋅
B
)
⊤
=
B
⊤
⋅
A
⊤
{\displaystyle (\mathbf {A\cdot B} )^{\top }=\mathbf {B} ^{\top }\cdot \mathbf {A} ^{\top }}
Abbildung
L
×
V
→
V
{\displaystyle {\mathcal {L}}\times \mathbb {V} \to \mathbb {V} }
oder
V
×
L
→
V
{\displaystyle \mathbb {V} \times {\mathcal {L}}\to \mathbb {V} }
Dyaden:
(
a
→
⊗
g
→
)
⋅
h
→
:=
(
g
→
⋅
h
→
)
a
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot {\vec {h}}:=({\vec {g}}\cdot {\vec {h}}){\vec {a}}}
b
→
⋅
(
a
→
⊗
g
→
)
:=
(
a
→
⋅
b
→
)
g
→
{\displaystyle {\vec {b}}\cdot ({\vec {a}}\otimes {\vec {g}}):=({\vec {a}}\cdot {\vec {b}}){\vec {g}}}
(
a
→
⊗
g
→
)
⋅
h
→
=
h
→
⋅
(
a
→
⊗
g
→
)
⊤
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot {\vec {h}}={\vec {h}}\cdot ({\vec {a}}\otimes {\vec {g}})^{\top }}
b
→
⋅
(
a
→
⊗
g
→
)
=
(
a
→
⊗
g
→
)
⊤
⋅
b
→
{\displaystyle {\vec {b}}\cdot ({\vec {a}}\otimes {\vec {g}})=({\vec {a}}\otimes {\vec {g}})^{\top }\cdot {\vec {b}}}
Allgemeine Tensoren:
A
i
j
(
e
^
i
⊗
e
^
j
)
⋅
v
→
=
A
i
j
(
v
→
⋅
e
^
j
)
e
^
i
{\displaystyle A_{ij}({\hat {e}}_{i}\otimes {\hat {e}}_{j})\cdot {\vec {v}}=A_{ij}({\vec {v}}\cdot {\hat {e}}_{j}){\hat {e}}_{i}}
A
i
j
(
a
→
i
⊗
g
→
j
)
⋅
v
→
=
A
i
j
(
v
→
⋅
g
→
j
)
a
→
i
{\displaystyle A^{ij}({\vec {a}}_{i}\otimes {\vec {g}}_{j})\cdot {\vec {v}}=A^{ij}({\vec {v}}\cdot {\vec {g}}_{j}){\vec {a}}_{i}}
v
→
⋅
A
i
j
(
e
^
i
⊗
e
^
j
)
=
A
i
j
(
v
→
⋅
e
^
i
)
e
^
j
{\displaystyle {\vec {v}}\cdot A_{ij}({\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{ij}({\vec {v}}\cdot {\hat {e}}_{i}){\hat {e}}_{j}}
v
→
⋅
A
i
j
(
a
→
i
⊗
g
→
j
)
=
A
i
j
(
v
→
⋅
a
^
i
)
g
→
j
{\displaystyle {\vec {v}}\cdot A^{ij}({\vec {a}}_{i}\otimes {\vec {g}}_{j})=A^{ij}({\vec {v}}\cdot {\hat {a}}_{i}){\vec {g}}_{j}}
Symbolisch:
A
⋅
v
→
=
v
→
⋅
A
⊤
{\displaystyle \mathbf {A} \cdot {\vec {v}}={\vec {v}}\cdot \mathbf {A} ^{\top }}
v
→
⋅
A
=
A
⊤
⋅
v
→
{\displaystyle {\vec {v}}\cdot \mathbf {A} =\mathbf {A} ^{\top }\cdot {\vec {v}}}
Abbildung
L
×
L
→
L
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
⋅
(
h
→
⊗
u
→
)
:=
(
g
→
⋅
h
→
)
a
→
⊗
u
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot ({\vec {h}}\otimes {\vec {u}}):=({\vec {g}}\cdot {\vec {h}}){\vec {a}}\otimes {\vec {u}}}
(
a
→
⊗
g
→
)
⋅
A
=
a
→
⊗
(
g
→
⋅
A
)
=
a
→
⊗
g
→
⋅
A
=
a
→
⊗
(
A
⊤
⋅
g
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot \mathbf {A} ={\vec {a}}\otimes ({\vec {g}}\cdot \mathbf {A} )={\vec {a}}\otimes {\vec {g}}\cdot \mathbf {A} ={\vec {a}}\otimes (\mathbf {A} ^{\top }\cdot {\vec {g}})}
A
⋅
(
a
→
⊗
g
→
)
=
(
A
⋅
a
→
)
⊗
g
→
=
A
⋅
a
→
⊗
g
→
{\displaystyle \mathbf {A} \cdot ({\vec {a}}\otimes {\vec {g}})=(\mathbf {A} \cdot {\vec {a}})\otimes {\vec {g}}=\mathbf {A} \cdot {\vec {a}}\otimes {\vec {g}}}
(
A
i
k
e
^
i
⊗
e
^
k
)
⋅
(
B
l
j
e
^
l
⊗
e
^
j
)
=
A
i
k
B
k
j
e
^
i
⊗
e
^
j
{\displaystyle (A_{ik}{\hat {e}}_{i}\otimes {\hat {e}}_{k})\cdot (B_{lj}{\hat {e}}_{l}\otimes {\hat {e}}_{j})=A_{ik}B_{kj}{\hat {e}}_{i}\otimes {\hat {e}}_{j}}
(
A
i
j
a
→
i
⊗
g
→
j
)
⋅
(
B
k
l
h
→
k
⊗
u
→
l
)
=
A
i
j
(
g
→
j
⋅
h
→
k
)
B
k
l
a
→
i
⊗
u
→
l
{\displaystyle \left(A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j}\right)\cdot \left(B^{kl}{\vec {h}}_{k}\otimes {\vec {u}}_{l}\right)=A^{ij}({\vec {g}}_{j}\cdot {\vec {h}}_{k})B^{kl}{\vec {a}}_{i}\otimes {\vec {u}}_{l}}
Abbildung
L
×
L
→
R
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to \mathbb {R} }
Definition über die #Spur :
(
a
→
⊗
g
→
)
:
(
b
→
⊗
h
→
)
:=
S
p
(
(
a
→
⊗
g
→
)
⊤
⋅
(
b
→
⊗
h
→
)
)
=
(
a
→
⋅
b
→
)
(
g
→
⋅
h
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}}):({\vec {b}}\otimes {\vec {h}}):=\mathrm {Sp} (({\vec {a}}\otimes {\vec {g}})^{\top }\cdot ({\vec {b}}\otimes {\vec {h}}))=({\vec {a}}\cdot {\vec {b}})({\vec {g}}\cdot {\vec {h}})}
A
:
B
:=
S
p
(
A
⊤
⋅
B
)
{\displaystyle \mathbf {A} :\mathbf {B} :=\mathrm {Sp} (\mathbf {A} ^{\top }\cdot \mathbf {B} )}
Eigenschaften:
A
:
B
=
B
:
A
=
A
⊤
:
B
⊤
=
B
⊤
:
A
⊤
{\displaystyle \mathbf {A} :\mathbf {B} =\mathbf {B} :\mathbf {A} =\mathbf {A} ^{\top }:\mathbf {B} ^{\top }=\mathbf {B} ^{\top }:\mathbf {A} ^{\top }}
A
⊤
:
B
=
A
:
B
⊤
{\displaystyle \mathbf {A} ^{\top }:\mathbf {B} =\mathbf {A} :\mathbf {B} ^{\top }}
A
:
(
B
⋅
C
)
=
(
B
⊤
⋅
A
)
:
C
=
(
A
⋅
C
⊤
)
:
B
{\displaystyle \mathbf {A} :(\mathbf {B\cdot C} )=(\mathbf {B} ^{\top }\cdot \mathbf {A} ):\mathbf {C} =(\mathbf {A\cdot C} ^{\top }):\mathbf {B} }
(
A
⋅
B
)
:
C
=
B
:
(
A
⊤
⋅
C
)
=
A
:
(
C
⋅
B
⊤
)
{\displaystyle (\mathbf {A\cdot B} ):\mathbf {C} =\mathbf {B} :(\mathbf {A} ^{\top }\cdot \mathbf {C} )=\mathbf {A} :(\mathbf {C\cdot B} ^{\top })}
(
u
→
⊗
v
→
)
:
A
=
u
→
⋅
A
⋅
v
→
{\displaystyle ({\vec {u}}\otimes {\vec {v}}):\mathbf {A} ={\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}}
Kreuzprodukt eines Vektors mit einem Tensor
Bearbeiten
Abbildung
V
×
L
→
L
{\displaystyle \mathbb {V} \times {\mathcal {L}}\to {\mathcal {L}}}
oder
L
×
V
→
L
{\displaystyle {\mathcal {L}}\times \mathbb {V} \to {\mathcal {L}}}
Dyaden:
a
→
×
(
b
→
⊗
g
→
)
=
(
a
→
×
b
→
)
⊗
g
→
=
a
→
×
b
→
⊗
g
→
{\displaystyle {\vec {a}}\times ({\vec {b}}\otimes {\vec {g}})=({\vec {a}}\times {\vec {b}})\otimes {\vec {g}}={\vec {a}}\times {\vec {b}}\otimes {\vec {g}}}
(
a
→
⊗
g
→
)
×
h
→
=
a
→
⊗
(
g
→
×
h
→
)
=
a
→
⊗
g
→
×
h
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\times {\vec {h}}={\vec {a}}\otimes ({\vec {g}}\times {\vec {h}})={\vec {a}}\otimes {\vec {g}}\times {\vec {h}}}
a
→
×
b
→
⊗
g
→
=
−
[
(
b
→
⊗
g
→
)
⊤
×
a
→
]
⊤
{\displaystyle {\vec {a}}\times {\vec {b}}\otimes {\vec {g}}=-[({\vec {b}}\otimes {\vec {g}})^{\top }\times {\vec {a}}]^{\top }}
a
→
⊗
g
→
×
h
→
=
−
[
h
→
×
(
a
→
⊗
g
→
)
⊤
]
⊤
{\displaystyle {\vec {a}}\otimes {\vec {g}}\times {\vec {h}}=-[{\vec {h}}\times ({\vec {a}}\otimes {\vec {g}})^{\top }]^{\top }}
a
j
e
^
j
×
(
A
k
l
e
^
k
⊗
e
^
l
)
=
a
j
A
k
l
(
e
^
j
×
e
^
k
)
⊗
e
^
l
=
ϵ
i
j
k
a
j
A
k
l
e
^
i
⊗
e
^
l
{\displaystyle a_{j}{\hat {e}}_{j}\times (A_{kl}{\hat {e}}_{k}\otimes {\hat {e}}_{l})=a_{j}A_{kl}({\hat {e}}_{j}\times {\hat {e}}_{k})\otimes {\hat {e}}_{l}=\epsilon _{ijk}a_{j}A_{kl}{\hat {e}}_{i}\otimes {\hat {e}}_{l}}
(
A
i
j
e
^
i
⊗
e
^
j
)
×
a
k
e
^
k
=
A
i
j
a
k
e
^
i
⊗
(
e
^
j
×
e
^
k
)
=
ϵ
j
k
l
A
i
j
a
k
e
^
i
⊗
e
^
l
{\displaystyle (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})\times a_{k}{\hat {e}}_{k}=A_{ij}a_{k}{\hat {e}}_{i}\otimes ({\hat {e}}_{j}\times {\hat {e}}_{k})=\epsilon _{jkl}A_{ij}a_{k}{\hat {e}}_{i}\otimes {\hat {e}}_{l}}
Allgemeine Tensoren:
(
a
→
×
A
)
⋅
g
→
:=
a
→
×
(
A
⋅
g
→
)
=
a
→
×
(
g
→
⋅
A
⊤
)
{\displaystyle ({\vec {a}}\times \mathbf {A} )\cdot {\vec {g}}:={\vec {a}}\times (\mathbf {A} \cdot {\vec {g}})={\vec {a}}\times ({\vec {g}}\cdot \mathbf {A} ^{\top })}
b
→
⋅
(
a
→
×
A
)
:=
(
b
→
×
a
→
)
⋅
A
{\displaystyle {\vec {b}}\cdot ({\vec {a}}\times \mathbf {A} ):=({\vec {b}}\times {\vec {a}})\cdot \mathbf {A} }
g
→
⋅
(
A
×
a
→
)
:=
(
g
→
⋅
A
)
×
a
→
=
(
A
⊤
⋅
g
→
)
×
a
→
{\displaystyle {\vec {g}}\cdot (\mathbf {A} \times {\vec {a}}):=({\vec {g}}\cdot \mathbf {A} )\times {\vec {a}}=(\mathbf {A} ^{\top }\cdot {\vec {g}})\times {\vec {a}}}
(
A
×
a
→
)
⋅
b
→
=
A
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {A} \times {\vec {a}})\cdot {\vec {b}}=\mathbf {A} \cdot ({\vec {a}}\times {\vec {b}})}
a
→
×
A
=
−
(
A
⊤
×
a
→
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} =-\left(\mathbf {A} ^{\top }\times {\vec {a}}\right)^{\top }}
A
×
a
→
=
−
(
a
→
×
A
⊤
)
⊤
{\displaystyle \mathbf {A} \times {\vec {a}}=-\left({\vec {a}}\times \mathbf {A} ^{\top }\right)^{\top }}
Symmetrische Tensoren:
a
→
×
A
S
=
−
(
A
S
×
a
→
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} ^{\mathrm {S} }=-\left(\mathbf {A} ^{\mathrm {S} }\times {\vec {a}}\right)^{\top }}
Insbesondere Kugeltensoren:
a
→
×
A
K
=
A
K
×
a
→
=
−
(
a
→
×
A
K
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} ^{\mathrm {K} }=\mathbf {A} ^{\mathrm {K} }\times {\vec {a}}=-({\vec {a}}\times \mathbf {A} ^{\mathrm {K} })^{\top }}
Schiefsymmetrische Tensoren:
a
→
×
A
A
=
(
A
A
×
a
→
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} ^{\mathrm {A} }=\left(\mathbf {A} ^{\mathrm {A} }\times {\vec {a}}\right)^{\top }}
#Axialer Tensor oder Kreuzproduktmatrix mit dem #Einheitstensor :
(
a
→
×
1
)
⋅
g
→
=
a
→
⋅
(
g
→
×
1
)
=
a
→
⋅
(
1
×
g
→
)
=
a
→
×
g
→
{\displaystyle ({\vec {a}}\times \mathbf {1} )\cdot {\vec {g}}={\vec {a}}\cdot ({\vec {g}}\times \mathbf {1} )={\vec {a}}\cdot (\mathbf {1} \times {\vec {g}})={\vec {a}}\times {\vec {g}}}
Mehrfach:
(
a
→
×
(
b
→
×
A
)
)
⋅
g
→
=
a
→
×
(
b
→
×
(
A
⋅
g
→
)
)
=
(
a
→
⋅
A
⋅
g
→
)
b
→
−
(
a
→
⋅
b
→
)
A
⋅
g
→
{\displaystyle ({\vec {a}}\times ({\vec {b}}\times \mathbf {A} ))\cdot {\vec {g}}={\vec {a}}\times ({\vec {b}}\times (\mathbf {A} \cdot {\vec {g}}))=({\vec {a}}\cdot \mathbf {A} \cdot {\vec {g}}){\vec {b}}-({\vec {a}}\cdot {\vec {b}})\mathbf {A} \cdot {\vec {g}}}
a
→
×
(
b
→
×
A
)
=
b
→
⊗
a
→
⋅
A
−
(
a
→
⋅
b
→
)
A
{\displaystyle {\vec {a}}\times ({\vec {b}}\times \mathbf {A} )={\vec {b}}\otimes {\vec {a}}\cdot \mathbf {A} -({\vec {a}}\cdot {\vec {b}})\mathbf {A} }
Meistens ist aber:
(
A
⋅
a
→
)
×
g
→
≠
A
⋅
(
a
→
×
g
→
)
=
(
A
×
a
→
)
⋅
g
→
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\times {\vec {g}}\neq \mathbf {A} \cdot ({\vec {a}}\times {\vec {g}})=(\mathbf {A} \times {\vec {a}})\cdot {\vec {g}}}
a
→
×
(
g
→
⋅
A
)
≠
(
a
→
×
g
→
)
⋅
A
=
a
→
⋅
(
g
→
×
A
)
{\displaystyle {\vec {a}}\times ({\vec {g}}\cdot \mathbf {A} )\neq ({\vec {a}}\times {\vec {g}})\cdot \mathbf {A} ={\vec {a}}\cdot ({\vec {g}}\times \mathbf {A} )}
Abbildung
L
×
L
→
V
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to \mathbb {V} }
A
×
B
=
E
3
:
(
A
⋅
B
⊤
)
=
−
E
3
:
(
B
⋅
A
⊤
)
=
−
B
×
A
∈
V
{\displaystyle \mathbf {A\times B} ={\stackrel {3}{\mathbf {E} }}:(\mathbf {A\cdot B} ^{\top })=-{\stackrel {3}{\mathbf {E} }}:(\mathbf {B\cdot A} ^{\top })=-\mathbf {B\times A} \in \mathbb {V} }
mit #Fundamentaltensor 3. Stufe
E
3
{\displaystyle {\stackrel {3}{\mathbf {E} }}}
.
(
a
→
⊗
g
→
)
×
(
b
→
⊗
h
→
)
=
(
g
→
⋅
h
→
)
a
→
×
b
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\times ({\vec {b}}\otimes {\vec {h}})=({\vec {g}}\cdot {\vec {h}}){\vec {a}}\times {\vec {b}}}
A
i
k
(
e
^
i
⊗
e
^
k
)
×
[
B
j
l
(
e
^
j
⊗
e
^
l
)
]
=
A
i
k
B
j
k
(
e
^
i
×
e
^
j
)
=
…
…
=
(
A
21
B
31
−
A
31
B
21
+
A
22
B
32
−
A
32
B
22
+
A
23
B
33
−
A
33
B
23
A
31
B
11
−
A
11
B
31
+
A
32
B
12
−
A
12
B
32
+
A
33
B
13
−
A
13
B
33
A
11
B
21
−
A
21
B
11
+
A
12
B
22
−
A
22
B
12
+
A
13
B
23
−
A
23
B
13
)
{\displaystyle {\begin{aligned}&A_{ik}({\hat {e}}_{i}\otimes {\hat {e}}_{k})\times [B_{jl}({\hat {e}}_{j}\otimes {\hat {e}}_{l})]=A_{ik}B_{jk}({\hat {e}}_{i}\times {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{21}B_{31}-A_{31}B_{21}+A_{22}B_{32}-A_{32}B_{22}+A_{23}B_{33}-A_{33}B_{23}\\A_{31}B_{11}-A_{11}B_{31}+A_{32}B_{12}-A_{12}B_{32}+A_{33}B_{13}-A_{13}B_{33}\\A_{11}B_{21}-A_{21}B_{11}+A_{12}B_{22}-A_{22}B_{12}+A_{13}B_{23}-A_{23}B_{13}\end{pmatrix}}\end{aligned}}}
Zusammenhang mit #Dualer axialer Vektor und #Vektorinvariante :
A
×
B
=
−
2
A
⋅
B
⊤
→
A
=
i
→
(
A
⋅
B
⊤
)
{\displaystyle \mathbf {A\times B} =-2{\stackrel {A}{\overrightarrow {\mathbf {A\cdot B} ^{\top }}}}={\vec {\mathrm {i} }}(\mathbf {A\cdot B} ^{\top })}
Mit #Einheitstensor :
1
×
A
=
2
A
→
A
=
−
i
→
(
A
)
{\displaystyle \mathbf {1\times A} =2{\stackrel {A}{\overrightarrow {\mathbf {A} }}}=-{\vec {\mathrm {i} }}(\mathbf {A} )}
Mehrfachprodukte:
(
A
⋅
B
)
×
C
=
A
×
(
C
⋅
B
⊤
)
{\displaystyle (\mathbf {A\cdot B} )\times \mathbf {C} =\mathbf {A} \times (\mathbf {C\cdot B} ^{\top })}
A
×
(
B
⋅
C
)
=
(
A
⋅
C
⊤
)
×
B
{\displaystyle \mathbf {A} \times (\mathbf {B\cdot C} )=(\mathbf {A\cdot C} ^{\top })\times \mathbf {B} }
Zusammenhang mit dem #Skalarkreuzprodukt von Tensoren :
A
×
B
=
A
⋅
×
(
B
⊤
)
{\displaystyle \mathbf {A\times B} =\mathbf {A} \cdot \!\!\times (\mathbf {B} ^{\top })}
Abbildung
L
×
L
→
V
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to \mathbb {V} }
(
a
→
⊗
g
→
)
⋅
×
(
h
→
⊗
u
→
)
=
−
(
u
→
⊗
h
→
)
⋅
×
(
g
→
⊗
a
→
)
:=
(
g
→
⋅
h
→
)
a
→
×
u
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot \!\!\times ({\vec {h}}\otimes {\vec {u}})=-({\vec {u}}\otimes {\vec {h}})\cdot \!\!\times ({\vec {g}}\otimes {\vec {a}}):=({\vec {g}}\cdot {\vec {h}}){\vec {a}}\times {\vec {u}}}
A
i
k
(
e
^
i
⊗
e
^
k
)
⋅
×
[
B
l
j
(
e
^
l
⊗
e
^
j
)
]
=
A
i
k
B
k
j
(
e
^
i
×
e
^
j
)
=
…
…
=
(
A
21
B
13
−
A
31
B
12
+
A
22
B
23
−
A
32
B
22
+
A
23
B
33
−
A
33
B
32
A
31
B
11
−
A
11
B
13
+
A
32
B
21
−
A
12
B
23
+
A
33
B
31
−
A
13
B
33
A
11
B
12
−
A
21
B
11
+
A
12
B
22
−
A
22
B
21
+
A
13
B
32
−
A
23
B
31
)
{\displaystyle {\begin{aligned}&A_{ik}({\hat {e}}_{i}\otimes {\hat {e}}_{k})\cdot \!\!\times [B_{lj}({\hat {e}}_{l}\otimes {\hat {e}}_{j})]=A_{ik}B_{kj}({\hat {e}}_{i}\times {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{21}B_{13}-A_{31}B_{12}+A_{22}B_{23}-A_{32}B_{22}+A_{23}B_{33}-A_{33}B_{32}\\A_{31}B_{11}-A_{11}B_{13}+A_{32}B_{21}-A_{12}B_{23}+A_{33}B_{31}-A_{13}B_{33}\\A_{11}B_{12}-A_{21}B_{11}+A_{12}B_{22}-A_{22}B_{21}+A_{13}B_{32}-A_{23}B_{31}\end{pmatrix}}\end{aligned}}}
Das Skalarkreuzprodukt mit dem #Einheitstensor vertauscht das dyadische Produkt durch das Kreuzprodukt:
1
⋅
×
(
a
→
⊗
b
→
)
=
a
→
×
b
→
{\displaystyle \mathbf {1} \cdot \!\!\times ({\vec {a}}\otimes {\vec {b}})={\vec {a}}\times {\vec {b}}}
Allgemein:
A
⋅
×
B
=
−
(
B
⊤
)
⋅
×
(
A
⊤
)
{\displaystyle \mathbf {A} \cdot \!\!\times \mathbf {B} =-(\mathbf {B} ^{\top })\cdot \!\!\times (\mathbf {A} ^{\top })}
A
⋅
×
(
B
⋅
C
)
=
(
A
⋅
B
)
⋅
×
C
{\displaystyle \mathbf {A} \cdot \!\!\times (\mathbf {B\cdot C} )=(\mathbf {A\cdot B} )\cdot \!\!\times \mathbf {C} }
(
A
⋅
B
)
⋅
×
C
=
A
⋅
×
(
B
⋅
C
)
{\displaystyle (\mathbf {A\cdot B} )\cdot \!\!\times \mathbf {C} =\mathbf {A} \cdot \!\!\times (\mathbf {B\cdot C} )}
Zusammenhang mit dem #Kreuzprodukt von Tensoren :
S
⋅
×
T
=
S
×
(
T
⊤
)
{\displaystyle \mathbf {S} \cdot \!\!\times \mathbf {T} =\mathbf {S\times (T^{\top })} }
Zusammenhang mit #Vektorinvariante und #Dualer axialer Vektor :
A
⋅
×
B
=
i
→
(
A
⋅
B
)
=
−
2
A
⋅
B
→
A
{\displaystyle \mathbf {A} \cdot \!\!\times \mathbf {B} ={\vec {\mathrm {i} }}(\mathbf {A} \cdot \mathbf {B} )=-2{\stackrel {A}{\overrightarrow {\mathbf {A} \cdot \mathbf {B} }}}}
Siehe auch #Äußeres Tensorprodukt #
Abbildung
L
×
L
→
L
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
×
×
(
h
→
⊗
b
→
)
:=
(
g
→
×
h
→
)
⊗
(
a
→
×
b
→
)
=
(
g
→
⊗
a
→
)
#
(
h
→
⊗
b
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\times \!\!\times ({\vec {h}}\otimes {\vec {b}}):=({\vec {g}}\times {\vec {h}})\otimes ({\vec {a}}\times {\vec {b}})=({\vec {g}}\otimes {\vec {a}})\#({\vec {h}}\otimes {\vec {b}})}
A
i
j
(
e
^
i
⊗
e
^
j
)
×
×
[
B
k
l
(
e
^
k
⊗
e
^
l
)
]
:=
A
i
j
B
k
l
(
e
^
j
×
e
^
k
)
⊗
(
e
^
i
×
e
^
l
)
{\displaystyle A_{ij}({\hat {e}}_{i}\otimes {\hat {e}}_{j})\times \!\!\times [B_{kl}({\hat {e}}_{k}\otimes {\hat {e}}_{l})]:=A_{ij}B_{kl}({\hat {e}}_{j}\times {\hat {e}}_{k})\otimes ({\hat {e}}_{i}\times {\hat {e}}_{l})}
A
×
×
B
=
A
⊤
#
B
{\displaystyle \mathbf {A} \times \!\!\times \mathbf {B} =\mathbf {A} ^{\top }\#\mathbf {B} }
Abbildung
L
×
L
→
L
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
#
(
b
→
⊗
h
→
)
:=
(
a
→
×
b
→
)
⊗
(
g
→
×
h
→
)
=
(
g
→
⊗
a
→
)
×
×
(
b
→
⊗
h
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\#({\vec {b}}\otimes {\vec {h}}):=({\vec {a}}\times {\vec {b}})\otimes ({\vec {g}}\times {\vec {h}})=({\vec {g}}\otimes {\vec {a}})\times \!\!\times ({\vec {b}}\otimes {\vec {h}})}
(
A
i
j
e
^
i
⊗
e
^
j
)
#
(
B
k
l
e
^
k
⊗
e
^
l
)
=
A
i
j
B
k
l
(
e
^
i
×
e
^
k
)
⊗
(
e
^
j
×
e
^
l
)
=
ϵ
i
k
m
ϵ
j
l
n
A
i
j
B
k
l
e
^
m
⊗
e
^
n
{\displaystyle {\begin{aligned}&(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})\#(B_{kl}{\hat {e}}_{k}\otimes {\hat {e}}_{l})=A_{ij}B_{kl}({\hat {e}}_{i}\times {\hat {e}}_{k})\otimes ({\hat {e}}_{j}\times {\hat {e}}_{l})\\&\qquad \qquad \qquad \qquad \qquad \quad \;\;\;=\epsilon _{ikm}\epsilon _{jln}A_{ij}B_{kl}{\hat {e}}_{m}\otimes {\hat {e}}_{n}\end{aligned}}}
Mit der Formel für das Produkt zweier #Permutationssymbole :
A
#
B
=
[
S
p
(
A
)
S
p
(
B
)
−
S
p
(
A
⋅
B
)
]
1
+
[
A
⋅
B
+
B
⋅
A
−
S
p
(
A
)
B
−
S
p
(
B
)
A
]
⊤
{\displaystyle {\begin{aligned}\mathbf {A} \#\mathbf {B} =&[\mathrm {Sp} (\mathbf {A} )\mathrm {Sp} (\mathbf {B} )-\mathrm {Sp} (\mathbf {A\cdot B} )]\mathbf {1} \\&+[\mathbf {A\cdot B} +\mathbf {B\cdot A} -\mathrm {Sp} (\mathbf {A} )\mathbf {B} -\mathrm {Sp} (\mathbf {B} )\mathbf {A} ]^{\top }\end{aligned}}}
Grundlegende Eigenschaften:
A
#
B
=
B
#
A
=
(
A
⊤
#
B
⊤
)
⊤
{\displaystyle \mathbf {A} \#\mathbf {B} =\mathbf {B} \#\mathbf {A} =(\mathbf {A} ^{\top }\#\mathbf {B} ^{\top })^{\top }}
(
A
+
B
)
#
C
=
A
#
C
+
B
#
C
{\displaystyle (\mathbf {A+B} )\#\mathbf {C} =\mathbf {A} \#\mathbf {C} +\mathbf {B} \#\mathbf {C} }
A
#
(
B
+
C
)
=
A
#
B
+
A
#
C
{\displaystyle \mathbf {A} \#(\mathbf {B+C} )=\mathbf {A} \#\mathbf {B} +\mathbf {A} \#\mathbf {C} }
Kreuzprodukt und #Kofaktor :
(
A
#
B
)
⋅
(
u
→
×
v
→
)
=
(
A
⋅
u
→
)
×
(
B
⋅
v
→
)
−
(
A
⋅
v
→
)
×
(
B
⋅
u
→
)
{\displaystyle (\mathbf {A} \#\mathbf {B} )\cdot ({\vec {u}}\times {\vec {v}})=(\mathbf {A} \cdot {\vec {u}})\times (\mathbf {B} \cdot {\vec {v}})-(\mathbf {A} \cdot {\vec {v}})\times (\mathbf {B} \cdot {\vec {u}})}
1
2
(
A
#
A
)
⋅
(
u
→
×
v
→
)
=
c
o
f
(
A
)
⋅
(
u
→
×
v
→
)
=
(
A
⋅
u
→
)
×
(
A
⋅
v
→
)
{\displaystyle {\frac {1}{2}}(\mathbf {A} \#\mathbf {A} )\cdot ({\vec {u}}\times {\vec {v}})=\mathrm {cof} (\mathbf {A} )\cdot ({\vec {u}}\times {\vec {v}})=(\mathbf {A} \cdot {\vec {u}})\times (\mathbf {A} \cdot {\vec {v}})}
#Hauptinvarianten :
1
2
(
A
#
1
)
:
1
=
S
p
(
A
)
{\displaystyle {\frac {1}{2}}(\mathbf {A\#1} ):\mathbf {1} =\mathrm {Sp} (\mathbf {A} )}
1
2
(
A
#
A
)
:
1
=
I
2
(
A
)
{\displaystyle {\frac {1}{2}}(\mathbf {A\#A} ):\mathbf {1} =\mathrm {I} _{2}(\mathbf {A} )}
1
6
(
A
#
A
)
:
A
=
det
(
A
)
{\displaystyle {\frac {1}{6}}(\mathbf {A\#A} ):\mathbf {A} =\det(\mathbf {A} )}
Weitere Eigenschaften:
1
#
1
=
2
1
{\displaystyle \mathbf {1} \#\mathbf {1} =2\,\mathbf {1} }
A
#
1
=
S
p
(
A
)
1
−
A
⊤
{\displaystyle \mathbf {A} \#\mathbf {1} =\mathrm {Sp} (\mathbf {A} )\mathbf {1} -\mathbf {A} ^{\top }}
(
A
#
B
)
:
C
=
(
B
#
C
)
:
A
=
(
C
#
A
)
:
B
{\displaystyle (\mathbf {A} \#\mathbf {B} ):\mathbf {C} =(\mathbf {B} \#\mathbf {C} ):\mathbf {A} =(\mathbf {C} \#\mathbf {A} ):\mathbf {B} }
S
p
(
A
#
B
)
=
S
p
(
A
)
S
p
(
B
)
−
S
p
(
A
⋅
B
)
{\displaystyle \mathrm {Sp} (\mathbf {A} \#\mathbf {B} )=\mathrm {Sp} (\mathbf {A} )\mathrm {Sp} (\mathbf {B} )-\mathrm {Sp} (\mathbf {A\cdot B} )}
(
A
#
B
)
⋅
(
C
#
D
)
=
(
A
⋅
C
)
#
(
B
⋅
D
)
+
(
A
⋅
D
)
#
(
B
⋅
C
)
{\displaystyle (\mathbf {A} \#\mathbf {B} )\cdot (\mathbf {C} \#\mathbf {D} )=(\mathbf {A\cdot C} )\#(\mathbf {B\cdot D} )+(\mathbf {A\cdot D} )\#(\mathbf {B\cdot C} )}
Aber meistens:
(
A
#
B
)
#
C
≠
A
#
(
B
#
C
)
{\displaystyle (\mathbf {A} \#\mathbf {B} )\#\mathbf {C} \neq \mathbf {A} \#(\mathbf {B} \#\mathbf {C} )}
.
Produkte von Tensoren, Dyaden und Vektoren
Bearbeiten
A
⋅
(
a
→
⊗
g
→
)
=
(
A
⋅
a
→
)
⊗
g
→
{\displaystyle \mathbf {A} \cdot ({\vec {a}}\otimes {\vec {g}})=(\mathbf {A} \cdot {\vec {a}})\otimes {\vec {g}}}
a
→
⊗
(
A
⋅
g
→
)
=
(
a
→
⊗
g
→
)
⋅
A
⊤
{\displaystyle {\vec {a}}\otimes (\mathbf {A} \cdot {\vec {g}})=({\vec {a}}\otimes {\vec {g}})\cdot \mathbf {A} ^{\top }}
a
→
⋅
A
⋅
g
→
=
A
:
(
a
→
⊗
g
→
)
{\displaystyle {\vec {a}}\cdot \mathbf {A} \cdot {\vec {g}}=\mathbf {A} :({\vec {a}}\otimes {\vec {g}})}
Spatprodukt und #Determinante eines Tensors:
(
A
⋅
a
→
)
⋅
[
(
A
⋅
b
→
)
×
(
A
⋅
c
→
)
]
=
d
e
t
(
A
)
a
→
⋅
(
b
→
×
c
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\cdot [(\mathbf {A} \cdot {\vec {b}})\times (\mathbf {A} \cdot {\vec {c}})]=\mathrm {det} (\mathbf {A} )\;{\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})}
Kreuzprodukt und #Kofaktor :
(
A
⋅
a
→
)
×
(
A
⋅
b
→
)
=
c
o
f
(
A
)
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\times (\mathbf {A} \cdot {\vec {b}})=\mathrm {cof} (\mathbf {A} )\cdot ({\vec {a}}\times {\vec {b}})}
A
⊤
⋅
[
(
A
⋅
a
→
)
×
(
A
⋅
b
→
)
]
=
d
e
t
(
A
)
a
→
×
b
→
{\displaystyle \mathbf {A} ^{\top }\cdot [(\mathbf {A} \cdot {\vec {a}})\times (\mathbf {A} \cdot {\vec {b}})]=\mathrm {det} (\mathbf {A} )\;{\vec {a}}\times {\vec {b}}}
#Axialer Tensor oder Kreuzproduktmatrix , #Kreuzprodukt von Tensoren , #Skalarkreuzprodukt von Tensoren , #Dualer axialer Vektor und #Vektorinvariante :
(
u
→
×
1
)
⋅
v
→
=
(
u
→
⊗
v
→
)
×
1
=
(
u
→
⊗
v
→
)
⋅
×
1
=
(
u
→
×
v
→
)
×
1
→
A
=
i
→
(
u
→
⊗
v
→
)
=
u
→
×
v
→
{\displaystyle ({\vec {u}}\times \mathbf {1} )\cdot {\vec {v}}=({\vec {u}}\otimes {\vec {v}})\times \mathbf {1} =({\vec {u}}\otimes {\vec {v}})\cdot \!\!\times \mathbf {1} ={\stackrel {A}{\overrightarrow {({\vec {u}}\times {\vec {v}})\times \mathbf {1} }}}={\vec {\mathrm {i} }}({\vec {u}}\otimes {\vec {v}})={\vec {u}}\times {\vec {v}}}
A
=
A
i
j
e
^
i
⊗
e
^
j
=
(
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
)
→
A
i
j
=
e
^
i
⋅
A
⋅
e
^
j
{\displaystyle \mathbf {A} =A_{ij}\,{\hat {e}}_{i}\otimes {\hat {e}}_{j}={\begin{pmatrix}A_{11}&A_{12}&A_{13}\\A_{21}&A_{22}&A_{23}\\A_{31}&A_{32}&A_{33}\end{pmatrix}}\quad \rightarrow \;A_{ij}={\hat {e}}_{i}\cdot \mathbf {A} \cdot {\hat {e}}_{j}}
A
=
A
i
j
a
→
i
⊗
g
→
j
→
A
i
j
=
a
→
i
⋅
A
⋅
g
→
j
=
(
a
→
i
⊗
g
→
j
)
:
A
{\displaystyle \mathbf {A} =A^{ij}\,{\vec {a}}_{i}\otimes {\vec {g}}_{j}\quad \rightarrow \;A^{ij}={\vec {a}}^{i}\cdot \mathbf {A} \cdot {\vec {g}}^{j}=({\vec {a}}^{i}\otimes {\vec {g}}^{j}):\mathbf {A} }
A
=
A
i
j
a
→
i
⊗
g
→
j
→
A
i
j
=
a
→
i
⋅
A
⋅
g
→
j
{\displaystyle \mathbf {A} =A_{ij}\,{\vec {a}}^{i}\otimes {\vec {g}}^{j}\quad \rightarrow \;A_{ij}={\vec {a}}_{i}\cdot \mathbf {A} \cdot {\vec {g}}_{j}}
A
=
A
j
i
a
→
i
⊗
g
→
j
→
A
j
i
=
a
→
i
⋅
A
⋅
g
→
j
{\displaystyle \mathbf {A} =A_{j}^{i}\,{\vec {a}}_{i}\otimes {\vec {g}}^{j}\quad \rightarrow \;A_{j}^{i}={\vec {a}}^{i}\cdot \mathbf {A} \cdot {\vec {g}}_{j}}
A
=
A
i
j
a
→
i
⊗
g
→
j
→
A
i
j
=
a
→
i
⋅
A
⋅
g
→
j
{\displaystyle \mathbf {A} =A_{i}^{j}\,{\vec {a}}^{i}\otimes {\vec {g}}_{j}\quad \rightarrow \;A_{i}^{j}={\vec {a}}_{i}\cdot \mathbf {A} \cdot {\vec {g}}^{j}}
A
=
A
i
j
a
→
i
⊗
a
→
j
=
A
i
j
∗
b
→
i
⊗
b
→
j
{\displaystyle \mathbf {A} =A_{ij}{\vec {a}}^{i}\otimes {\vec {a}}^{j}=A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {b}}^{j}}
Die Komponenten
A
i
j
∗
{\displaystyle A_{ij}^{\ast }}
ergeben sich durch Vor- und Nachmultiplikation mit dem #Einheitstensor
1
=
b
→
i
⊗
b
→
i
{\displaystyle \mathbf {1} ={\vec {b}}^{i}\otimes {\vec {b}}_{i}}
:
A
=
1
⋅
A
⋅
1
⊤
=
(
b
→
i
⊗
b
→
i
)
⋅
(
A
k
l
a
→
k
⊗
a
→
l
)
⋅
(
b
→
j
⊗
b
→
j
)
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
a
→
l
⋅
b
→
j
)
b
→
i
⊗
b
→
j
=:
A
i
j
∗
b
→
i
⊗
b
→
j
→
A
i
j
∗
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
a
→
l
⋅
b
→
j
)
{\displaystyle {\begin{aligned}\mathbf {A} =\mathbf {1\cdot A\cdot 1} ^{\top }=&({\vec {b}}^{i}\otimes {\vec {b}}_{i})\cdot (A_{kl}{\vec {a}}^{k}\otimes {\vec {a}}^{l})\cdot ({\vec {b}}_{j}\otimes {\vec {b}}^{j})\\=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {a}}^{l}\cdot {\vec {b}}_{j}){\vec {b}}^{i}\otimes {\vec {b}}^{j}=:A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {b}}^{j}\\\rightarrow A_{ij}^{\ast }=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {a}}^{l}\cdot {\vec {b}}_{j})\end{aligned}}}
Allgemein:
A
=
A
i
j
a
→
i
⊗
g
→
j
=
A
i
j
∗
b
→
i
⊗
h
→
j
{\displaystyle \mathbf {A} =A_{ij}{\vec {a}}^{i}\otimes {\vec {g}}^{j}=A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {h}}^{j}}
Basiswechsel mit
1
=
(
b
→
i
⋅
a
→
k
)
b
→
i
⊗
a
→
k
=
(
h
→
j
⋅
g
→
l
)
h
→
j
⊗
g
→
l
{\displaystyle \mathbf {1} =({\vec {b}}_{i}\cdot {\vec {a}}^{k}){\vec {b}}^{i}\otimes {\vec {a}}_{k}=({\vec {h}}_{j}\cdot {\vec {g}}^{l}){\vec {h}}^{j}\otimes {\vec {g}}_{l}}
:
A
=
1
⋅
A
⋅
1
⊤
=
(
b
→
i
⋅
a
→
k
)
(
b
→
i
⊗
a
→
k
)
⋅
A
m
n
(
a
→
m
⊗
g
→
n
)
⋅
(
h
→
j
⋅
g
→
l
)
(
g
→
l
⊗
h
→
j
)
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
h
→
j
⋅
g
→
l
)
(
b
→
i
⊗
h
→
j
)
=
A
i
j
∗
b
→
i
⊗
h
→
j
→
A
i
j
∗
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
g
→
l
⋅
h
→
j
)
{\displaystyle {\begin{aligned}\mathbf {A} =\mathbf {1\cdot A\cdot 1} ^{\top }=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})({\vec {b}}^{i}\otimes {\vec {a}}_{k})\cdot A_{mn}({\vec {a}}^{m}\otimes {\vec {g}}^{n})\cdot ({\vec {h}}_{j}\cdot {\vec {g}}^{l})({\vec {g}}_{l}\otimes {\vec {h}}^{j})\\=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {h}}_{j}\cdot {\vec {g}}^{l})({\vec {b}}^{i}\otimes {\vec {h}}^{j})=A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {h}}^{j}\\\rightarrow A_{ij}^{\ast }=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {g}}^{l}\cdot {\vec {h}}_{j})\end{aligned}}}
Definition für einen Tensor A :
⟨
u
→
,
v
→
⟩
:=
u
→
⋅
A
⋅
v
→
=
A
:
(
u
→
⊗
v
→
)
{\displaystyle \langle {\vec {u}},{\vec {v}}\rangle :={\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}=\mathbf {A} :({\vec {u}}\otimes {\vec {v}})}
Zwei Tensoren A und B sind identisch, wenn
u
→
⋅
A
⋅
v
→
=
u
→
⋅
B
⋅
v
→
∀
u
→
,
v
→
∈
V
{\displaystyle {\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}={\vec {u}}\cdot \mathbf {B} \cdot {\vec {v}}\quad \forall \;{\vec {u}},{\vec {v}}\in \mathbb {V} }
Definition
c
o
f
(
A
)
:=
A
⊤
⋅
A
⊤
−
I
1
(
A
)
A
⊤
+
I
2
(
A
)
1
{\displaystyle \mathrm {cof} (\mathbf {A} ):=\mathbf {A^{\top }\cdot A^{\top }} -\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} ^{\top }+\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} }
#Invarianten :
Wenn λ1,2,3 die #Eigenwerte des Tensors A sind, dann hat cof(A ) die Eigenwerte λ1 λ2 , λ2 λ3 , λ3 λ1 .
#Hauptinvarianten :
I
1
(
c
o
f
(
A
)
)
=
I
2
(
A
)
{\displaystyle \mathrm {I} _{1}(\mathrm {cof} (\mathbf {A} ))=\mathrm {I} _{2}(\mathbf {A} )}
I
2
(
c
o
f
(
A
)
)
=
I
1
(
A
)
d
e
t
(
A
)
{\displaystyle \mathrm {I} _{2}(\mathrm {cof} (\mathbf {A} ))=\mathrm {I} _{1}(\mathbf {A} )\mathrm {det} (\mathbf {A} )}
d
e
t
(
c
o
f
(
A
)
)
=
d
e
t
2
(
A
)
{\displaystyle \mathrm {det} (\mathrm {cof} (\mathbf {A} ))=\mathrm {det} ^{2}(\mathbf {A} )}
#Betrag :
‖
c
o
f
(
A
)
‖
=
I
2
(
A
⊤
⋅
A
)
=
2
2
‖
A
‖
4
−
‖
A
⊤
⋅
A
‖
2
{\displaystyle \|\mathrm {cof} (\mathbf {A} )\|={\sqrt {\mathrm {I} _{2}(\mathbf {A^{\top }\cdot A} )}}={\frac {\sqrt {2}}{2}}{\sqrt {\|\mathbf {A} \|^{4}-\|\mathbf {A^{\top }\cdot A} \|^{2}}}}
Weitere Eigenschaften:
c
o
f
(
x
A
)
=
x
2
c
o
f
(
A
)
{\displaystyle \mathrm {cof} (x\mathbf {A} )=x^{2}\mathrm {cof} (\mathbf {A} )}
d
e
t
(
A
)
≠
0
→
c
o
f
(
A
)
=
det
(
A
)
A
⊤
−
1
{\displaystyle \mathrm {det} (\mathbf {A} )\neq 0\quad \rightarrow \quad \mathrm {cof} (\mathbf {A} )=\det(\mathbf {A} )\mathbf {A} ^{\top -1}}
A
⊤
⋅
c
o
f
(
A
)
=
c
o
f
(
A
)
⋅
A
⊤
=
d
e
t
(
A
)
1
{\displaystyle \mathbf {A} ^{\top }\cdot \mathrm {cof} (\mathbf {A} )=\mathrm {cof} (\mathbf {A} )\cdot \mathbf {A} ^{\top }=\mathrm {det} (\mathbf {A} )\mathbf {1} }
c
o
f
(
A
⋅
B
)
=
c
o
f
(
A
)
⋅
c
o
f
(
B
)
{\displaystyle \mathrm {cof} (\mathbf {A\cdot B} )=\mathrm {cof} (\mathbf {A} )\cdot \mathrm {cof} (\mathbf {B} )}
c
o
f
(
A
⊤
)
=
c
o
f
(
A
)
⊤
{\displaystyle \mathrm {cof} (\mathbf {A} ^{\top })=\mathrm {cof} (\mathbf {A} )^{\top }}
c
o
f
(
c
o
f
(
A
)
)
=
d
e
t
(
A
)
A
{\displaystyle \mathrm {cof} \left(\mathrm {cof} (\mathbf {A} )\right)=\mathrm {det} (\mathbf {A} )\mathbf {A} }
c
o
f
(
A
i
j
e
^
i
⊗
e
^
j
)
=
1
2
(
A
k
l
A
m
n
ϵ
k
m
i
ϵ
l
n
j
)
(
e
^
i
⊗
e
^
j
)
=
…
…
=
(
A
22
A
33
−
A
23
A
32
A
23
A
31
−
A
21
A
33
A
21
A
32
−
A
22
A
31
A
32
A
13
−
A
33
A
12
A
33
A
11
−
A
31
A
13
A
31
A
12
−
A
32
A
11
A
12
A
23
−
A
13
A
22
A
13
A
21
−
A
11
A
23
A
11
A
22
−
A
12
A
21
)
{\displaystyle {\begin{aligned}&\mathrm {cof} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})={\frac {1}{2}}(A_{kl}A_{mn}\epsilon _{kmi}\epsilon _{lnj})({\hat {e}}_{i}\otimes {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{22}A_{33}-A_{23}A_{32}&A_{23}A_{31}-A_{21}A_{33}&A_{21}A_{32}-A_{22}A_{31}\\A_{32}A_{13}-A_{33}A_{12}&A_{33}A_{11}-A_{31}A_{13}&A_{31}A_{12}-A_{32}A_{11}\\A_{12}A_{23}-A_{13}A_{22}&A_{13}A_{21}-A_{11}A_{23}&A_{11}A_{22}-A_{12}A_{21}\end{pmatrix}}\end{aligned}}}
Kofaktor und #Äußeres Tensorprodukt :
c
o
f
(
A
)
=
1
2
A
#
A
{\displaystyle \mathrm {cof} (\mathbf {A} )={\frac {1}{2}}\mathbf {A} \#\mathbf {A} }
c
o
f
(
A
+
B
)
=
1
2
(
A
#
A
+
2
A
#
B
+
B
#
B
)
=
c
o
f
(
A
)
+
c
o
f
(
B
)
+
A
#
B
{\displaystyle {\begin{aligned}\mathrm {cof} (\mathbf {A+B} )=&{\frac {1}{2}}(\mathbf {A} \#\mathbf {A} +2\mathbf {A} \#\mathbf {B} +\mathbf {B} \#\mathbf {B} )\\=&\mathrm {cof} (\mathbf {A} )+\mathrm {cof} (\mathbf {B} )+\mathbf {A} \#\mathbf {B} \end{aligned}}}
Kreuzprodukt und Kofaktor:
(
A
⋅
a
→
)
×
(
A
⋅
b
→
)
=
c
o
f
(
A
)
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\times (\mathbf {A} \cdot {\vec {b}})=\mathrm {cof} (\mathbf {A} )\cdot ({\vec {a}}\times {\vec {b}})}
Definition:
a
d
j
(
A
)
:=
A
2
−
I
1
(
A
)
A
+
I
2
(
A
)
1
=
c
o
f
(
A
)
⊤
{\displaystyle \mathrm {adj} (\mathbf {A} ):=\mathbf {A} ^{2}-\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} =\mathrm {cof} (\mathbf {A} )^{\top }}
#Hauptinvarianten :
I
1
(
a
d
j
(
A
)
)
=
I
2
(
A
)
{\displaystyle \mathrm {I} _{1}(\mathrm {adj} (\mathbf {A} ))=\mathrm {I} _{2}(\mathbf {A} )}
I
2
(
a
d
j
(
A
)
)
=
I
1
(
A
)
d
e
t
(
A
)
{\displaystyle \mathrm {I} _{2}(\mathrm {adj} (\mathbf {A} ))=\mathrm {I} _{1}(\mathbf {A} )\mathrm {det} (\mathbf {A} )}
d
e
t
(
a
d
j
(
A
)
)
=
d
e
t
2
(
A
)
{\displaystyle \mathrm {det} (\mathrm {adj} (\mathbf {A} ))=\mathrm {det} ^{2}(\mathbf {A} )}
#Betrag :
‖
a
d
j
(
A
)
‖
=
I
2
(
A
⊤
⋅
A
)
=
2
2
‖
A
‖
4
−
‖
A
⊤
⋅
A
‖
2
{\displaystyle \|\mathrm {adj} (\mathbf {A} )\|={\sqrt {\mathrm {I} _{2}(\mathbf {A^{\top }\cdot A} )}}={\frac {\sqrt {2}}{2}}{\sqrt {\|\mathbf {A} \|^{4}-\|\mathbf {A^{\top }\cdot A} \|^{2}}}}
Weitere Eigenschaften:
a
d
j
(
x
A
)
=
x
2
a
d
j
(
A
)
{\displaystyle \mathrm {adj} (x\mathbf {A} )=x^{2}\mathrm {adj} (\mathbf {A} )}
d
e
t
(
A
)
≠
0
→
a
d
j
(
A
)
=
det
(
A
)
A
−
1
{\displaystyle \mathrm {det} (\mathbf {A} )\neq 0\quad \rightarrow \quad \mathrm {adj} (\mathbf {A} )=\det(\mathbf {A} )\mathbf {A} ^{-1}}
A
⋅
a
d
j
(
A
)
=
a
d
j
(
A
)
⋅
A
=
d
e
t
(
A
)
1
{\displaystyle \mathbf {A} \cdot \mathrm {adj} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )\cdot \mathbf {A} =\mathrm {det} (\mathbf {A} )\mathbf {1} }
a
d
j
(
A
⋅
B
)
=
a
d
j
(
B
)
⋅
a
d
j
(
A
)
{\displaystyle \mathrm {adj} (\mathbf {A\cdot B} )=\mathrm {adj} (\mathbf {B} )\cdot \mathrm {adj} (\mathbf {A} )}
a
d
j
(
A
⊤
)
=
a
d
j
(
A
)
⊤
{\displaystyle \mathrm {adj} (\mathbf {A} ^{\top })=\mathrm {adj} (\mathbf {A} )^{\top }}
a
d
j
(
A
+
B
)
=
1
2
(
A
#
A
+
2
A
#
B
+
B
#
B
)
⊤
=
a
d
j
(
A
)
+
a
d
j
(
B
)
+
A
⊤
#
B
⊤
{\displaystyle {\begin{aligned}\mathrm {adj} (\mathbf {A+B} )=&{\frac {1}{2}}(\mathbf {A} \#\mathbf {A} +2\mathbf {A} \#\mathbf {B} +\mathbf {B} \#\mathbf {B} )^{\top }\\=&\mathrm {adj} (\mathbf {A} )+\mathrm {adj} (\mathbf {B} )+\mathbf {A} ^{\top }\#\mathbf {B} ^{\top }\end{aligned}}}
a
d
j
(
a
d
j
(
A
)
)
=
d
e
t
(
A
)
A
{\displaystyle \mathrm {adj} \left(\mathrm {adj} (\mathbf {A} )\right)=\mathrm {det} (\mathbf {A} )\mathbf {A} }
a
d
j
(
A
i
j
e
^
i
⊗
e
^
j
)
=
1
2
(
A
k
l
A
m
n
ϵ
k
m
j
ϵ
l
n
i
)
(
e
^
i
⊗
e
^
j
)
=
…
…
=
(
A
22
A
33
−
A
23
A
32
A
32
A
13
−
A
33
A
12
A
12
A
23
−
A
13
A
22
A
23
A
31
−
A
21
A
33
A
33
A
11
−
A
31
A
13
A
13
A
21
−
A
11
A
23
A
21
A
32
−
A
22
A
31
A
31
A
12
−
A
32
A
11
A
11
A
22
−
A
12
A
21
)
{\displaystyle {\begin{aligned}&\mathrm {adj} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})={\frac {1}{2}}(A_{kl}A_{mn}\epsilon _{kmj}\epsilon _{lni})({\hat {e}}_{i}\otimes {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{22}A_{33}-A_{23}A_{32}&A_{32}A_{13}-A_{33}A_{12}&A_{12}A_{23}-A_{13}A_{22}\\A_{23}A_{31}-A_{21}A_{33}&A_{33}A_{11}-A_{31}A_{13}&A_{13}A_{21}-A_{11}A_{23}\\A_{21}A_{32}-A_{22}A_{31}&A_{31}A_{12}-A_{32}A_{11}&A_{11}A_{22}-A_{12}A_{21}\end{pmatrix}}\end{aligned}}}
Definition
A
−
1
:
A
−
1
⋅
A
=
A
⋅
A
−
1
=
1
{\displaystyle \mathbf {A} ^{-1}:\quad \mathbf {A} ^{-1}\cdot \mathbf {A} =\mathbf {A\cdot A} ^{-1}=\mathbf {1} }
Die Inverse ist nur definiert, wenn
|
A
|
=
d
e
t
(
A
)
=
I
3
(
A
)
≠
0
{\displaystyle |\mathbf {A} |=\mathrm {det} (\mathbf {A} )=\mathrm {I} _{3}(\mathbf {A} )\neq 0}
Zusammenhang mit dem adjungierten Tensor
a
d
j
(
A
)
{\displaystyle \mathrm {adj} (\mathbf {A} )}
:
A
−
1
=
1
det
(
A
)
a
d
j
(
A
)
{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\mathrm {adj} (\mathbf {A} )}
A
=
A
i
j
e
^
i
⊗
e
^
j
)
→
A
−
1
=
1
|
A
|
(
A
22
A
33
−
A
23
A
32
A
32
A
13
−
A
33
A
12
A
12
A
23
−
A
13
A
22
A
23
A
31
−
A
21
A
33
A
33
A
11
−
A
31
A
13
A
13
A
21
−
A
11
A
23
A
21
A
32
−
A
22
A
31
A
31
A
12
−
A
32
A
11
A
11
A
22
−
A
12
A
21
)
{\displaystyle {\begin{aligned}\mathbf {A} =&A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})\\\rightarrow \mathbf {A} ^{-1}=&{\frac {1}{|\mathbf {A} |}}{\begin{pmatrix}A_{22}A_{33}-A_{23}A_{32}&A_{32}A_{13}-A_{33}A_{12}&A_{12}A_{23}-A_{13}A_{22}\\A_{23}A_{31}-A_{21}A_{33}&A_{33}A_{11}-A_{31}A_{13}&A_{13}A_{21}-A_{11}A_{23}\\A_{21}A_{32}-A_{22}A_{31}&A_{31}A_{12}-A_{32}A_{11}&A_{11}A_{22}-A_{12}A_{21}\end{pmatrix}}\end{aligned}}}
Werden die Spalten von A mit Vektoren bezeichnet, also
A
=
(
a
→
1
a
→
2
a
→
3
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}{\vec {a}}_{1}&{\vec {a}}_{2}&{\vec {a}}_{3}\end{pmatrix}}}
, dann gilt:
A
−
1
=
(
a
→
1
a
→
2
a
→
3
)
⊤
=
1
d
e
t
(
A
)
(
a
→
2
×
a
→
3
a
→
3
×
a
→
1
a
→
1
×
a
→
2
)
⊤
{\displaystyle \mathbf {A} ^{-1}={\begin{pmatrix}{\vec {a}}^{1}&{\vec {a}}^{2}&{\vec {a}}^{3}\end{pmatrix}}^{\top }={\frac {1}{\mathrm {det} (\mathbf {A} )}}{\begin{pmatrix}{\vec {a}}_{2}\times {\vec {a}}_{3}&{\vec {a}}_{3}\times {\vec {a}}_{1}&{\vec {a}}_{1}\times {\vec {a}}_{2}\end{pmatrix}}^{\top }}
Satz von Cayley-Hamilton :
A
−
1
=
1
I
3
(
A
)
(
A
2
−
I
1
(
A
)
A
+
I
2
(
A
)
1
)
{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\mathrm {I} _{3}(\mathbf {A} )}}(\mathbf {A} ^{2}-\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} )}
worin
I
1
,
2
,
3
{\displaystyle \mathrm {I} _{1,2,3}}
die drei #Hauptinvarianten sind.
Inverse des transponierten Tensors:
(
A
⊤
)
−
1
=
(
A
−
1
)
⊤
=
A
⊤
−
1
=
A
−
⊤
{\displaystyle (\mathbf {A} ^{\top })^{-1}=(\mathbf {A} ^{-1})^{\top }=\mathbf {A} ^{\top -1}=\mathbf {A} ^{-\top }}
Inverse eines Tensorprodukts:
(
A
⋅
B
)
−
1
=
B
−
1
⋅
A
−
1
{\displaystyle (\mathbf {A\cdot B} )^{-1}=\mathbf {B} ^{-1}\cdot \mathbf {A} ^{-1}}
(
x
A
)
−
1
=
1
x
A
−
1
{\displaystyle (x\mathbf {A} )^{-1}={\frac {1}{x}}\mathbf {A} ^{-1}}
#Äußeres Tensorprodukt und Inverse einer Summe:
(
A
+
B
)
−
1
=
1
det
(
A
+
B
)
(
a
d
j
(
A
)
+
a
d
j
(
B
)
+
(
A
#
B
)
⊤
)
{\displaystyle (\mathbf {A+B} )^{-1}={\frac {1}{\det(\mathbf {A+B} )}}\left(\mathrm {adj} (\mathbf {A} )+\mathrm {adj} (\mathbf {B} )+(\mathbf {A} \#\mathbf {B} )^{\top }\right)}
Invertierungsformeln:
(
a
1
+
b
→
⊗
c
→
)
−
1
=
1
a
(
1
−
1
a
+
b
→
⋅
c
→
b
→
⊗
c
→
)
{\displaystyle (a\mathbf {1} +{\vec {b}}\otimes {\vec {c}})^{-1}={\frac {1}{a}}\left(\mathbf {1} -{\frac {1}{a+{\vec {b}}\cdot {\vec {c}}}}{\vec {b}}\otimes {\vec {c}}\right)}
(
a
1
+
b
→
⊗
c
→
+
d
→
⊗
e
→
)
−
1
=
1
a
D
(
D
1
+
b
→
⊗
(
q
c
→
+
r
e
→
)
+
d
→
⊗
(
s
c
→
+
t
e
→
)
)
q
=
a
+
d
→
⋅
e
→
,
r
=
−
c
→
⋅
d
→
,
s
=
−
b
→
⋅
e
→
,
t
=
a
+
b
→
⋅
c
→
D
=
r
s
−
q
t
{\displaystyle {\begin{aligned}&(a\mathbf {1} +{\vec {b}}\otimes {\vec {c}}+{\vec {d}}\otimes {\vec {e}})^{-1}={\frac {1}{aD}}\left(D\mathbf {1} +{\vec {b}}\otimes (q{\vec {c}}+r{\vec {e}})+{\vec {d}}\otimes (s{\vec {c}}+t{\vec {e}})\right)\\&\qquad q=a+{\vec {d}}\cdot {\vec {e}},\quad r=-{\vec {c}}\cdot {\vec {d}},\quad s=-{\vec {b}}\cdot {\vec {e}},\quad t=a+{\vec {b}}\cdot {\vec {c}}\\&\qquad D=rs-qt\end{aligned}}}
(
a
→
i
⊗
g
→
i
)
−
1
=
g
→
i
⊗
a
→
i
{\displaystyle ({\vec {a}}_{i}\otimes {\vec {g}}_{i})^{-1}={\vec {g}}^{i}\otimes {\vec {a}}^{i}}
A
⋅
v
^
=
λ
v
^
{\displaystyle \mathbf {A} \cdot {\hat {v}}=\lambda {\hat {v}}}
mit Eigenwert
λ
{\displaystyle \lambda }
und Eigenvektor
v
^
{\displaystyle {\hat {v}}}
. Die Eigenvektoren werden auf die Länge eins normiert.
Jeder Tensor hat drei Eigenwerte und drei dazugehörige Eigenvektoren. Mindestens ein Eigenwert und Eigenvektor sind reell. Die beiden anderen Eigenwerte und -vektoren können reell oder komplex sein.
Charakteristische Gleichung
d
e
t
(
A
−
λ
i
1
)
=
−
λ
i
3
+
I
1
(
A
)
λ
i
2
−
I
2
(
A
)
λ
i
+
I
3
(
A
)
=
0
{\displaystyle \mathrm {det} (\mathbf {A} -\lambda _{i}\mathbf {1} )=-\lambda _{i}^{3}+\mathrm {I} _{1}(\mathbf {A} )\lambda _{i}^{2}-\mathrm {I} _{2}(\mathbf {A} )\lambda _{i}+\mathrm {I} _{3}(\mathbf {A} )=0}
Lösung siehe Cardanische Formeln . Die Koeffizienten sind die #Hauptinvarianten :
I
1
(
A
)
:=
S
p
(
A
)
=
λ
1
+
λ
2
+
λ
3
{\displaystyle \mathrm {I} _{1}(\mathbf {A} ):=\mathrm {Sp} (\mathbf {A} )=\lambda _{1}+\lambda _{2}+\lambda _{3}}
I
2
(
A
)
:=
1
2
[
I
1
(
A
)
2
−
I
1
(
A
2
)
]
=
λ
1
λ
2
+
λ
2
λ
3
+
λ
3
λ
1
{\displaystyle \mathrm {I} _{2}(\mathbf {A} ):={\frac {1}{2}}[\mathrm {I} _{1}(\mathbf {A} )^{2}-\mathrm {I} _{1}(\mathbf {A} ^{2})]=\lambda _{1}\lambda _{2}+\lambda _{2}\lambda _{3}+\lambda _{3}\lambda _{1}}
I
3
(
A
)
:=
d
e
t
(
A
)
=
λ
1
λ
2
λ
3
{\displaystyle \mathrm {I} _{3}(\mathbf {A} ):=\mathrm {det} (\mathbf {A} )=\lambda _{1}\lambda _{2}\lambda _{3}}
Eigenvektoren
v
→
{\displaystyle {\vec {v}}}
sind nur bis auf einen Faktor ≠ 0 bestimmt. Der Nullvektor ist kein Eigenvektor.
Bestimmungsgleichung:
(
A
−
λ
1
)
⋅
v
→
=
0
→
{\displaystyle (\mathbf {A} -\lambda \mathbf {1} )\cdot {\vec {v}}={\vec {0}}}
Tensor
A
=
A
i
j
e
^
i
⊗
e
^
j
{\displaystyle \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}}
:
(
A
11
−
λ
A
12
A
13
A
21
A
22
−
λ
A
23
A
31
A
32
A
33
−
λ
)
⋅
(
v
1
v
2
v
3
)
=
(
0
0
0
)
{\displaystyle {\begin{pmatrix}A_{11}-\lambda &A_{12}&A_{13}\\A_{21}&A_{22}-\lambda &A_{23}\\A_{31}&A_{32}&A_{33}-\lambda \end{pmatrix}}\cdot {\begin{pmatrix}v_{1}\\v_{2}\\v_{3}\end{pmatrix}}={\begin{pmatrix}0\\0\\0\end{pmatrix}}}
Bestimmung mit gegebenem/angenommenem
v
1
{\displaystyle v_{1}}
:
(
A
12
A
13
A
22
−
λ
A
23
A
32
A
33
−
λ
)
⋅
(
v
2
v
3
)
=
v
1
(
λ
−
A
11
−
A
21
−
A
31
)
{\displaystyle {\begin{pmatrix}A_{12}&A_{13}\\A_{22}-\lambda &A_{23}\\A_{32}&A_{33}-\lambda \end{pmatrix}}\cdot {\begin{pmatrix}v_{2}\\v_{3}\end{pmatrix}}=v_{1}{\begin{pmatrix}\lambda -A_{11}\\-A_{21}\\-A_{31}\end{pmatrix}}}
Geometrische Vielfachheit 1:
v
2
=
v
1
(
λ
−
A
33
)
A
21
+
A
23
A
31
(
A
22
−
λ
)
(
A
33
−
λ
)
−
A
23
A
32
{\displaystyle v_{2}=v_{1}{\frac {(\lambda -A_{33})A_{21}+A_{23}A_{31}}{(A_{22}-\lambda )(A_{33}-\lambda )-A_{23}A_{32}}}}
v
3
=
v
1
(
λ
−
A
22
)
A
31
+
A
32
A
21
(
A
22
−
λ
)
(
A
33
−
λ
)
−
A
23
A
32
{\displaystyle v_{3}=v_{1}{\frac {(\lambda -A_{22})A_{31}+A_{32}A_{21}}{(A_{22}-\lambda )(A_{33}-\lambda )-A_{23}A_{32}}}}
Geometrische Vielfachheit 2:
(
A
13
A
23
A
33
−
λ
)
v
3
=
−
v
1
(
A
11
−
λ
A
21
A
31
)
−
v
2
(
A
12
A
22
−
λ
A
32
)
{\displaystyle {\begin{pmatrix}A_{13}\\A_{23}\\A_{33}-\lambda \end{pmatrix}}v_{3}=-v_{1}{\begin{pmatrix}A_{11}-\lambda \\A_{21}\\A_{31}\end{pmatrix}}-v_{2}{\begin{pmatrix}A_{12}\\A_{22}-\lambda \\A_{32}\end{pmatrix}}}
Die Formeln bleiben richtig, wenn die Indizes {1,2,3} zyklisch vertauscht werden.
Symmetrischen Tensoren: Für das Betragsquadrat der Komponenten
v
i
j
{\displaystyle v_{ij}}
der auf Betrag 1 normierten Eigenvektoren
v
→
i
{\displaystyle {\vec {v}}_{i}}
des (komplexen ) Tensors
A
∈
C
n
×
n
{\displaystyle A\in \mathbb {C} ^{n\times n}}
gilt mit dessen Eigenwerten
λ
i
{\displaystyle \lambda _{i}}
und den Eigenwerten
μ
j
k
{\displaystyle \mu _{jk}}
der Hauptuntermatrizen von
A
{\displaystyle A}
:[ 1]
|
v
i
j
|
2
∏
k
=
1
;
k
≠
i
n
(
λ
i
−
λ
k
)
=
∏
k
=
1
n
−
1
(
λ
i
−
μ
j
k
)
{\displaystyle |v_{ij}|^{2}\prod _{k=1;k\neq i}^{n}{\big (}\lambda _{i}-\lambda _{k}{\big )}=\prod _{k=1}^{n-1}{\big (}\lambda _{i}-\mu _{jk}{\big )}}
Sei
A
=
A
⊤
{\displaystyle \mathbf {A} =\mathbf {A} ^{\top }}
symmetrisch .
Symmetrische Tensoren haben reelle Eigenwerte und paarweise zueinander senkrechte oder orthogonalisierbare Eigenvektoren, die also eine Orthonormalbasis aufbauen. Die Eigenvektoren werden so nummeriert, dass sie ein Rechtssystem bilden.
Hauptachsentransformation mit Eigenwerten
λ
i
{\displaystyle \lambda _{i}}
und Eigenvektoren
a
^
i
{\displaystyle {\hat {a}}_{i}}
des symmetrischen Tensors A :
A
=
∑
i
=
1
3
λ
i
a
^
i
⊗
a
^
i
=
(
a
^
i
⊗
e
^
i
)
⋅
(
∑
j
=
1
3
λ
j
e
^
j
⊗
e
^
j
)
⋅
(
e
^
k
⊗
a
^
k
)
=
(
a
^
1
a
^
2
a
^
3
)
⋅
(
λ
1
0
0
0
λ
2
0
0
0
λ
3
)
⋅
(
a
^
1
a
^
2
a
^
3
)
⊤
{\displaystyle {\begin{aligned}\mathbf {A} =&\sum _{i=1}^{3}\lambda _{i}{\hat {a}}_{i}\otimes {\hat {a}}_{i}=\left({\hat {a}}_{i}\otimes {\hat {e}}_{i}\right)\cdot \left(\sum _{j=1}^{3}\lambda _{j}{\hat {e}}_{j}\otimes {\hat {e}}_{j}\right)\cdot \left({\hat {e}}_{k}\otimes {\hat {a}}_{k}\right)\\=&{\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}\cdot {\begin{pmatrix}\lambda _{1}&0&0\\0&\lambda _{2}&0\\0&0&\lambda _{3}\end{pmatrix}}\cdot {\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}^{\top }\end{aligned}}}
bzw.
(
a
^
1
a
^
2
a
^
3
)
⊤
⋅
A
⋅
(
a
^
1
a
^
2
a
^
3
)
=
(
λ
1
0
0
0
λ
2
0
0
0
λ
3
)
{\displaystyle {\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}^{\top }\cdot \mathbf {A} \cdot {\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}={\begin{pmatrix}\lambda _{1}&0&0\\0&\lambda _{2}&0\\0&0&\lambda _{3}\end{pmatrix}}}
Eigensystem schiefsymmetrischer Tensoren
Bearbeiten
Sei
A
=
−
A
⊤
{\displaystyle \mathbf {A} =-\mathbf {A} ^{\top }}
schiefsymmetrisch .
Schiefsymmetrische Tensoren haben einen reellen und zwei konjugiert komplexe, rein imaginäre Eigenwerte. Der reelle Eigenwert von A ist null zu dem ein Eigenvektor gehört, der proportional zur reellen #Vektorinvariante
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} )}
ist. Siehe auch #Axialer Tensor oder Kreuzproduktmatrix .
Eigensystem allgemeiner auch unsymmetrischer Tensoren
Bearbeiten
Sei
a
,
b
,
c
∈
R
{\displaystyle a,b,c\in \mathbb {R} }
und
a
→
1
,
a
→
2
,
a
→
3
∈
R
3
{\displaystyle {\vec {a}}_{1},{\vec {a}}_{2},{\vec {a}}_{3}\in \mathbb {R} ^{3}}
eine Basis und
a
→
1
,
a
→
2
,
a
→
3
{\displaystyle {\vec {a}}^{1},{\vec {a}}^{2},{\vec {a}}^{3}}
die dazu duale Basis.
Der Tensor
T
=
a
a
→
1
⊗
a
→
1
+
b
a
→
2
⊗
a
→
2
+
c
a
→
3
⊗
a
→
3
{\displaystyle \mathbf {T} =a\,{\vec {a}}_{1}\otimes {\vec {a}}^{1}+b\,{\vec {a}}_{2}\otimes {\vec {a}}^{2}+c\,{\vec {a}}_{3}\otimes {\vec {a}}^{3}}
hat die Eigenwerte
λ
1
=
a
,
λ
2
=
b
,
λ
3
=
c
{\displaystyle \lambda _{1}=a,\;\lambda _{2}=b,\;\lambda _{3}=c}
und Eigenvektoren
v
→
1
=
a
→
1
,
v
→
2
=
a
→
2
,
v
→
3
=
a
→
3
{\displaystyle {\vec {v}}_{1}={\vec {a}}_{1},\;{\vec {v}}_{2}={\vec {a}}_{2},\;{\vec {v}}_{3}={\vec {a}}_{3}}
Der #transponierte Tensor hat dieselben Eigenwerte zu den dualen Eigenvektoren
v
→
1
=
a
→
1
,
v
→
2
=
a
→
2
,
v
→
3
=
a
→
3
{\displaystyle {\vec {v}}_{1}={\vec {a}}^{1},\;{\vec {v}}_{2}={\vec {a}}^{2},\;{\vec {v}}_{3}={\vec {a}}^{3}}
Ein reeller und zwei konjugiert komplexe Eigenwerte
Bearbeiten
Der Tensor
T
=
c
a
→
1
⊗
a
→
1
+
a
(
a
→
2
⊗
a
→
2
+
a
→
3
⊗
a
→
3
)
+
b
(
a
→
2
⊗
a
→
3
−
a
→
3
⊗
a
→
2
)
{\displaystyle \mathbf {T} =c\,{\vec {a}}_{1}\otimes {\vec {a}}^{1}+a({\vec {a}}_{2}\otimes {\vec {a}}^{2}+{\vec {a}}_{3}\otimes {\vec {a}}^{3})+b({\vec {a}}_{2}\otimes {\vec {a}}^{3}-{\vec {a}}_{3}\otimes {\vec {a}}^{2})}
hat die Eigenwerte
λ
1
=
c
,
λ
2
=
a
+
i
b
,
λ
3
=
a
−
i
b
{\displaystyle \lambda _{1}=c,\;\lambda _{2}=a+\mathrm {i} \,b,\;\lambda _{3}=a-\mathrm {i} \,b}
und Eigenvektoren
v
→
1
=
a
→
1
,
v
→
2
=
a
→
2
+
i
a
→
3
,
v
→
3
=
a
→
2
−
i
a
→
3
{\displaystyle {\vec {v}}_{1}={\vec {a}}_{1},\;{\vec {v}}_{2}={\vec {a}}_{2}+\mathrm {i} \,{\vec {a}}_{3},\;{\vec {v}}_{3}={\vec {a}}_{2}-\mathrm {i} \,{\vec {a}}_{3}}
Der #transponierte Tensor hat dieselben Eigenwerte zu den Eigenvektoren
v
→
1
=
a
→
1
,
v
→
2
=
a
→
2
−
i
a
→
3
,
v
→
3
=
a
→
2
+
i
a
→
3
{\displaystyle {\vec {v}}_{1}={\vec {a}}^{1},\;{\vec {v}}_{2}={\vec {a}}^{2}-\mathrm {i} \,{\vec {a}}^{3},\;{\vec {v}}_{3}={\vec {a}}^{2}+\mathrm {i} \,{\vec {a}}^{3}}
Die #Eigenwerte
λ
1
,
λ
2
,
λ
3
{\displaystyle \lambda _{1},\lambda _{2},\lambda _{3}}
sind Invarianten.
Die Hauptinvarianten des Tensors A sind die Koeffizienten seines charakteristischen Polynoms:
d
e
t
(
A
−
x
1
)
=
−
x
3
+
S
p
(
A
)
x
2
−
I
2
(
A
)
x
+
d
e
t
(
A
)
{\displaystyle \mathrm {det} (\mathbf {A} -x\mathbf {1} )=-x^{3}+\mathrm {Sp} (\mathbf {A} )x^{2}-\mathrm {I} _{2}(\mathbf {A} )x+\mathrm {det} (\mathbf {A} )}
Spezialfall:
d
e
t
(
b
→
⊗
c
→
+
a
1
)
=
a
2
(
a
+
b
→
⋅
c
→
)
{\displaystyle \mathrm {det} ({\vec {b}}\otimes {\vec {c}}+a\mathbf {1} )=a^{2}(a+{\vec {b}}\cdot {\vec {c}})}
Satz von Cayley-Hamilton :
−
A
3
+
S
p
(
A
)
A
2
−
I
2
(
A
)
A
+
d
e
t
(
A
)
1
=
0
{\displaystyle -\mathbf {A} ^{3}+\mathrm {Sp} (\mathbf {A} )\mathbf {A} ^{2}-\mathrm {I} _{2}(\mathbf {A} )\mathbf {A} +\mathrm {det} (\mathbf {A} )\mathbf {1} =\mathbf {0} }
Abbildung
L
→
R
{\displaystyle {\mathcal {L}}\to \mathbb {R} }
S
p
(
A
)
=
I
1
(
A
)
=
1
2
(
A
#
1
)
:
1
=
λ
1
+
λ
2
+
λ
3
{\displaystyle \mathrm {Sp} (\mathbf {A} )=\mathrm {I} _{1}(\mathbf {A} )={\frac {1}{2}}(\mathbf {A} \#\mathbf {1} ):\mathbf {1} =\lambda _{1}+\lambda _{2}+\lambda _{3}}
mit #Eigenwerten λ1,2,3 von A .
S
p
(
a
→
⊗
g
→
)
=
S
p
(
g
→
⊗
a
→
)
:=
a
→
⋅
g
→
{\displaystyle \mathrm {Sp} ({\vec {a}}\otimes {\vec {g}})=\mathrm {Sp} ({\vec {g}}\otimes {\vec {a}}):={\vec {a}}\cdot {\vec {g}}}
Linearität:
x
,
y
∈
R
→
S
p
(
x
A
+
y
B
)
=
x
S
p
(
A
)
+
y
S
p
(
B
)
{\displaystyle x,y\in \mathbb {R} \rightarrow \quad \mathrm {Sp} (x\mathbf {A} +y\mathbf {B} )=x\mathrm {Sp} (\mathbf {A} )+y\mathrm {Sp} (\mathbf {B} )}
S
p
(
A
)
=
S
p
(
A
⊤
)
{\displaystyle \mathrm {Sp} (\mathbf {A} )=\mathrm {Sp} (\mathbf {A} ^{\top })}
S
p
(
A
⋅
B
)
=
S
p
(
B
⋅
A
)
{\displaystyle \mathrm {Sp} (\mathbf {A\cdot B} )=\mathrm {Sp} (\mathbf {B\cdot A} )}
S
p
(
A
⊤
⋅
B
)
=
S
p
(
A
⋅
B
⊤
)
{\displaystyle \mathrm {Sp} (\mathbf {A^{\top }\cdot B} )=\mathrm {Sp} (\mathbf {A\cdot B^{\top }} )}
S
p
(
A
⋅
B
⋅
C
)
=
S
p
(
B
⋅
C
⋅
A
)
=
S
p
(
C
⋅
A
⋅
B
)
{\displaystyle \mathrm {Sp} (\mathbf {A\cdot B\cdot C} )=\mathrm {Sp} (\mathbf {B\cdot C\cdot A} )=\mathrm {Sp} (\mathbf {C\cdot A\cdot B} )}
In Komponenten:
S
p
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
i
i
=
A
11
+
A
22
+
A
33
{\displaystyle \mathrm {Sp} \left(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)=A_{ii}=A_{11}+A_{22}+A_{33}}
S
p
(
A
i
j
a
→
i
⊗
b
→
j
)
=
A
i
j
a
→
i
⋅
b
→
j
{\displaystyle \mathrm {Sp} \left(A^{ij}{\vec {a}}_{i}\otimes {\vec {b}}_{j}\right)=A^{ij}{\vec {a}}_{i}\cdot {\vec {b}}_{j}}
S
p
(
A
j
i
a
→
i
⊗
a
→
j
)
=
S
p
(
A
i
j
a
→
i
⊗
a
→
j
)
=
A
i
i
{\displaystyle \mathrm {Sp} \left(A_{j}^{i}{\vec {a}}_{i}\otimes {\vec {a}}^{j}\right)=\mathrm {Sp} \left(A_{i}^{j}{\vec {a}}^{i}\otimes {\vec {a}}_{j}\right)=A_{i}^{i}}
Abbildung
L
→
R
{\displaystyle {\mathcal {L}}\to \mathbb {R} }
I
2
(
A
)
:=
1
2
[
S
p
(
A
)
2
−
S
p
(
A
2
)
]
=
1
2
(
A
#
A
)
:
1
=
λ
1
λ
2
+
λ
2
λ
3
+
λ
3
λ
1
{\displaystyle \mathrm {I} _{2}(\mathbf {A} ):={\frac {1}{2}}[\mathrm {Sp} (\mathbf {A} )^{2}-\mathrm {Sp} (\mathbf {A} ^{2})]={\frac {1}{2}}(\mathbf {A} \#\mathbf {A} ):\mathbf {1} =\lambda _{1}\lambda _{2}+\lambda _{2}\lambda _{3}+\lambda _{3}\lambda _{1}}
mit #Eigenwerten λ1,2,3 von A .
I
2
(
A
)
=
S
p
(
c
o
f
(
A
)
)
=
S
p
(
a
d
j
(
A
)
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} )=\mathrm {Sp(cof} (\mathbf {A} ))=\mathrm {Sp(adj} (\mathbf {A} ))}
I
2
(
x
A
)
=
x
2
I
2
(
A
)
{\displaystyle \mathrm {I} _{2}(x\mathbf {A} )=x^{2}\mathrm {I} _{2}(\mathbf {A} )}
I
2
(
A
⊤
)
=
I
2
(
A
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} ^{\top })=\mathrm {I} _{2}(\mathbf {A} )}
I
2
(
A
⋅
B
)
=
I
2
(
B
⋅
A
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} \cdot \mathbf {B} )=\mathrm {I} _{2}(\mathbf {B} \cdot \mathbf {A} )}
I
2
(
A
⋅
B
⋅
C
)
=
I
2
(
B
⋅
C
⋅
A
)
=
I
2
(
C
⋅
A
⋅
B
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} \cdot \mathbf {B} \cdot \mathbf {C} )=\mathrm {I} _{2}(\mathbf {B} \cdot \mathbf {C} \cdot \mathbf {A} )=\mathrm {I} _{2}(\mathbf {C} \cdot \mathbf {A} \cdot \mathbf {B} )}
I
2
(
A
+
B
)
=
I
2
(
A
)
+
I
2
(
B
)
+
S
p
(
A
)
S
p
(
B
)
−
S
p
(
A
⋅
B
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} +\mathbf {B} )=\mathrm {I} _{2}(\mathbf {A} )+\mathrm {I} _{2}(\mathbf {B} )+\mathrm {Sp} (\mathbf {A} )\mathrm {Sp} (\mathbf {B} )-\mathrm {Sp} (\mathbf {A} \cdot \mathbf {B} )}
In Komponenten:
I
2
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
11
A
22
+
A
11
A
33
+
A
22
A
33
−
A
12
A
21
−
A
13
A
31
−
A
23
A
32
{\displaystyle \operatorname {I} _{2}(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{11}A_{22}+A_{11}A_{33}+A_{22}A_{33}-A_{12}A_{21}-A_{13}A_{31}-A_{23}A_{32}}
I
2
(
A
i
j
a
→
i
⊗
b
→
j
)
=
1
2
A
i
j
A
k
l
[
(
a
→
i
⋅
b
→
j
)
(
a
→
k
⋅
b
→
l
)
−
(
a
→
i
⋅
b
→
l
)
(
a
→
k
⋅
b
→
j
)
]
{\displaystyle \operatorname {I} _{2}(A^{ij}{\vec {a}}_{i}\otimes {\vec {b}}_{j})={\frac {1}{2}}A^{ij}A^{kl}[({\vec {a}}_{i}\cdot {\vec {b}}_{j})({\vec {a}}_{k}\cdot {\vec {b}}_{l})-({\vec {a}}_{i}\cdot {\vec {b}}_{l})({\vec {a}}_{k}\cdot {\vec {b}}_{j})]}
I
2
(
A
j
i
a
→
i
⊗
a
→
j
)
=
1
2
(
A
i
i
A
j
j
−
A
j
i
A
i
j
)
{\displaystyle \operatorname {I} _{2}\left(A_{j}^{i}{\vec {a}}_{i}\otimes {\vec {a}}^{j}\right)={\frac {1}{2}}(A_{i}^{i}A_{j}^{j}-A_{j}^{i}A_{i}^{j})}
Abbildung
L
→
R
{\displaystyle {\mathcal {L}}\to \mathbb {R} }
I
3
(
A
)
:=
d
e
t
(
A
)
=
1
6
(
A
#
A
)
:
A
=
λ
1
λ
2
λ
3
{\displaystyle \mathrm {I} _{3}(\mathbf {A} ):=\mathrm {det} (\mathbf {A} )={\frac {1}{6}}(\mathbf {A} \#\mathbf {A} ):\mathbf {A} =\lambda _{1}\lambda _{2}\lambda _{3}}
mit #Eigenwerten λ1,2,3 von A .
d
e
t
(
A
⊤
)
=
d
e
t
(
A
)
{\displaystyle \mathrm {det} (\mathbf {A} ^{\top })=\mathrm {det} (\mathbf {A} )}
Determinantenproduktsatz:
d
e
t
(
A
⋅
B
)
=
d
e
t
(
B
⋅
A
)
=
d
e
t
(
A
)
d
e
t
(
B
)
{\displaystyle \mathrm {det} (\mathbf {A\cdot B} )=\mathrm {det} (\mathbf {B\cdot A} )=\mathrm {det} (\mathbf {A} )\mathrm {det} (\mathbf {B} )}
d
e
t
(
A
⋅
B
⋅
C
)
=
d
e
t
(
B
⋅
C
⋅
A
)
=
d
e
t
(
C
⋅
A
⋅
B
)
=
d
e
t
(
A
)
d
e
t
(
B
)
d
e
t
(
C
)
{\displaystyle \mathrm {det} (\mathbf {A\cdot B\cdot C} )=\mathrm {det} (\mathbf {B\cdot C\cdot A} )=\mathrm {det} (\mathbf {C\cdot A\cdot B} )=\mathrm {det} (\mathbf {A} )\mathrm {det} (\mathbf {B} )\mathrm {det} (\mathbf {C} )}
d
e
t
(
A
−
1
)
=
1
d
e
t
(
A
)
{\displaystyle \mathrm {det} (\mathbf {A} ^{-1})={\frac {1}{\mathrm {det} (\mathbf {A} )}}}
Multiplikation mit Skalaren
x
∈
R
{\displaystyle x\in \mathbb {R} }
:
|
x
a
→
b
→
c
→
|
=
|
a
→
x
b
→
c
→
|
=
|
a
→
b
→
x
c
→
|
=
x
|
a
→
b
→
c
→
|
{\displaystyle {\begin{vmatrix}x{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}={\begin{vmatrix}{\vec {a}}&x{\vec {b}}&{\vec {c}}\end{vmatrix}}={\begin{vmatrix}{\vec {a}}&{\vec {b}}&x{\vec {c}}\end{vmatrix}}=x{\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}}
d
e
t
(
x
A
)
=
x
3
d
e
t
(
A
)
{\displaystyle \mathrm {det} (x\mathbf {A} )=x^{3}\mathrm {det} (\mathbf {A} )}
In Komponenten:
d
e
t
(
A
i
j
e
^
i
⊗
e
^
j
)
=
|
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
|
=
A
11
(
A
22
A
33
−
A
23
A
32
)
+
A
12
(
A
23
A
31
−
A
21
A
33
)
+
A
13
(
A
21
A
32
−
A
22
A
31
)
{\displaystyle {\begin{aligned}\mathrm {det} \left(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)=&{\begin{vmatrix}A_{11}&A_{12}&A_{13}\\A_{21}&A_{22}&A_{23}\\A_{31}&A_{32}&A_{33}\end{vmatrix}}\\=&A_{11}(A_{22}A_{33}-A_{23}A_{32})+A_{12}(A_{23}A_{31}-A_{21}A_{33})\\&+A_{13}(A_{21}A_{32}-A_{22}A_{31})\end{aligned}}}
d
e
t
(
A
i
j
a
→
i
⊗
g
→
j
)
=
|
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
|
|
a
→
1
a
→
2
a
→
3
|
|
g
→
1
g
→
2
g
→
3
|
{\displaystyle {\begin{aligned}\mathrm {det} (A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j})=&{\begin{vmatrix}A^{11}&A^{12}&A^{13}\\A^{21}&A^{22}&A^{23}\\A^{31}&A^{32}&A^{33}\end{vmatrix}}{\begin{vmatrix}{\vec {a}}_{1}&{\vec {a}}_{2}&{\vec {a}}_{3}\end{vmatrix}}{\begin{vmatrix}{\vec {g}}_{1}&{\vec {g}}_{2}&{\vec {g}}_{3}\end{vmatrix}}\end{aligned}}}
det
(
A
j
i
a
→
i
⊗
a
→
j
)
=
|
A
1
1
A
2
1
A
3
1
A
1
2
A
2
2
A
3
2
A
1
3
A
2
3
A
3
3
|
{\displaystyle \operatorname {det} \left(A_{j}^{i}{\vec {a}}_{i}\otimes {\vec {a}}^{j}\right)={\begin{vmatrix}A_{1}^{1}&A_{2}^{1}&A_{3}^{1}\\A_{1}^{2}&A_{2}^{2}&A_{3}^{2}\\A_{1}^{3}&A_{2}^{3}&A_{3}^{3}\end{vmatrix}}}
Zusammenhang mit den anderen Hauptinvarianten:
d
e
t
(
A
)
=
1
6
[
S
p
(
A
)
3
−
3
S
p
(
A
)
S
p
(
A
2
)
+
2
S
p
(
A
3
)
]
=
1
3
[
S
p
(
A
3
)
+
3
S
p
(
A
)
I
2
(
A
)
−
S
p
(
A
)
3
]
{\displaystyle {\begin{aligned}\mathrm {det} (\mathbf {A} )=&{\frac {1}{6}}[\mathrm {Sp} (\mathbf {A} )^{3}-3\mathrm {Sp} (\mathbf {A} )\mathrm {Sp} (\mathbf {A} ^{2})+2\mathrm {Sp} (\mathbf {A} ^{3})]\\[1ex]=&{\frac {1}{3}}[\mathrm {Sp} (\mathbf {A} ^{3})+3\mathrm {Sp} (\mathbf {A} )\mathrm {I} _{2}(\mathbf {A} )-\mathrm {Sp} (\mathbf {A} )^{3}]\end{aligned}}}
Zusammenhang mit dem Spatprodukt :
(
A
⋅
a
→
)
⋅
[
(
A
⋅
b
→
)
×
(
A
⋅
c
→
)
]
=
d
e
t
(
A
)
a
→
⋅
(
b
→
×
c
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\cdot [(\mathbf {A} \cdot {\vec {b}})\times (\mathbf {A} \cdot {\vec {c}})]=\mathrm {det} (\mathbf {A} ){\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})}
Zusammenhang mit #Äußeres Tensorprodukt :
det
(
A
)
=
1
6
(
A
#
A
)
:
A
{\displaystyle \det(\mathbf {A} )={\frac {1}{6}}(\mathbf {A} \#\mathbf {A} ):\mathbf {A} }
→
det
(
A
+
B
)
=
det
(
A
)
+
det
(
B
)
+
S
p
(
A
)
I
2
(
B
)
+
I
2
(
A
)
S
p
(
B
)
+
S
p
(
A
⋅
B
⋅
(
A
+
B
)
)
−
S
p
(
A
⋅
B
)
S
p
(
A
+
B
)
{\displaystyle {\begin{aligned}\rightarrow \det(\mathbf {A+B} )=&\det(\mathbf {A} )+\det(\mathbf {B} )+\mathrm {Sp} (\mathbf {A} )\mathrm {I} _{2}(\mathbf {B} )+\mathrm {I} _{2}(\mathbf {A} )\mathrm {Sp} (\mathbf {B} )\\&+\mathrm {Sp} (\mathbf {A\cdot B\cdot (A+B)} )-\mathrm {Sp} (\mathbf {A\cdot B} )\mathrm {Sp} (\mathbf {A+B} )\end{aligned}}}
Zusammenhang mit dem #Kofaktor :
det
(
A
+
B
)
=
det
(
A
)
+
c
o
f
(
A
)
:
B
+
A
:
c
o
f
(
B
)
+
det
(
B
)
{\displaystyle \det(\mathbf {A} +\mathbf {B} )=\det(\mathbf {A} )+\mathrm {cof} (\mathbf {A} ):\mathbf {B} +\mathbf {A} :\mathrm {cof} (\mathbf {B} )+\det(\mathbf {B} )}
Abbildung
L
→
R
{\displaystyle {\mathcal {L}}\to \mathbb {R} }
∥
A
∥:=
A
:
A
=
S
p
(
A
⊤
⋅
A
)
{\displaystyle \parallel \mathbf {A} \parallel :={\sqrt {\mathbf {A} :\mathbf {A} }}={\sqrt {\mathrm {Sp} (\mathbf {A} ^{\top }\cdot \mathbf {A} )}}}
∥
a
→
⊗
g
→
∥=
|
a
→
|
|
g
→
|
{\displaystyle \parallel {\vec {a}}\otimes {\vec {g}}\parallel =|{\vec {a}}|\,|{\vec {g}}|}
∥
A
i
j
e
^
i
⊗
e
^
j
∥=
A
i
j
A
i
j
{\displaystyle \parallel A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\parallel ={\sqrt {A_{ij}A_{ij}}}}
∥
A
i
j
a
→
i
⊗
g
→
j
∥=
A
i
j
A
k
l
(
a
→
i
⋅
a
→
k
)
(
g
→
j
⋅
g
→
l
)
{\displaystyle \parallel A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j}\parallel ={\sqrt {A^{ij}A^{kl}({\vec {a}}_{i}\cdot {\vec {a}}_{k})({\vec {g}}_{j}\cdot {\vec {g}}_{l})}}}
∥
A
j
i
a
→
i
⊗
a
→
j
∥=
A
j
i
A
l
k
(
a
→
i
⋅
a
→
k
)
(
a
→
j
⋅
a
→
l
)
{\displaystyle \parallel A_{j}^{i}{\vec {a}}_{i}\otimes {\vec {a}}^{j}\parallel ={\sqrt {A_{j}^{i}A_{l}^{k}({\vec {a}}_{i}\cdot {\vec {a}}_{k})({\vec {a}}^{j}\cdot {\vec {a}}^{l})}}}
Falls
A
=
A
⊤
{\displaystyle \mathbf {A} =\mathbf {A} ^{\top }}
:
∥
A
∥=
S
p
2
(
A
)
−
2
I
2
(
A
)
=
S
p
(
A
2
)
=
λ
1
2
+
λ
2
2
+
λ
3
2
{\displaystyle \quad \parallel \mathbf {A} \parallel ={\sqrt {\mathrm {Sp} ^{2}(\mathbf {A} )-2\mathrm {I} _{2}(\mathbf {A} )}}={\sqrt {\mathrm {Sp} (\mathbf {A} ^{2})}}={\sqrt {\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}}}}
Falls
A
=
−
A
⊤
{\displaystyle \mathbf {A} =-\mathbf {A} ^{\top }}
:
∥
A
∥=
2
I
2
(
A
)
=
−
S
p
(
A
2
)
{\displaystyle \quad \parallel \mathbf {A} \parallel ={\sqrt {2\mathrm {I} _{2}(\mathbf {A} )}}={\sqrt {-\mathrm {Sp} (\mathbf {A} ^{2})}}}
Für #Schiefsymmetrische Tensoren
A
=
−
A
⊤
=
A
A
{\displaystyle \mathbf {A} =-\mathbf {A} ^{\top }=\mathbf {A} ^{\mathrm {A} }}
gibt es einen dualen axialen
Vektor
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
für den gilt:
A
⋅
v
→
=
A
→
A
×
v
→
{\displaystyle \mathbf {A} \cdot {\vec {v}}={\stackrel {A}{\overrightarrow {\mathbf {A} }}}\times {\vec {v}}}
für alle
v
→
∈
V
{\displaystyle {\vec {v}}\in \mathbb {V} }
Der duale axiale Vektor ist proportional zur #Vektorinvariante :
A
→
A
:=
−
1
2
i
→
(
A
)
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}:=-{\frac {1}{2}}{\vec {\mathrm {i} }}(\mathbf {A} )}
Berechnung mit #Fundamentaltensor 3. Stufe
E
3
{\displaystyle {\stackrel {3}{\mathbf {E} }}}
, #Kreuzprodukt von Tensoren oder #Skalarkreuzprodukt von Tensoren :
A
→
A
=
−
1
2
E
3
:
A
=
−
1
2
A
×
1
=
−
1
2
A
⋅
×
1
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}=-{\frac {1}{2}}{\stackrel {3}{\mathbf {E} }}:\mathbf {A} =-{\frac {1}{2}}\mathbf {A} \times \mathbf {1} =-{\frac {1}{2}}\mathbf {A} \cdot \!\!\times \mathbf {1} }
A
i
j
e
^
i
⊗
e
^
j
→
A
=
−
1
2
A
i
j
e
^
i
×
e
^
j
=
1
2
(
A
32
−
A
23
A
13
−
A
31
A
21
−
A
12
)
{\displaystyle {\stackrel {A}{\overrightarrow {A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}}}}=-{\frac {1}{2}}A_{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\frac {1}{2}}{\begin{pmatrix}A_{32}-A_{23}\\A_{13}-A_{31}\\A_{21}-A_{12}\end{pmatrix}}}
A
i
j
(
a
→
i
⊗
b
→
j
)
→
A
=
−
1
2
A
i
j
a
→
i
×
b
→
j
{\displaystyle {\stackrel {A}{\overrightarrow {A^{ij}({\vec {a}}_{i}\otimes {\vec {b}}_{j})}}}=-{\frac {1}{2}}A^{ij}{\vec {a}}_{i}\times {\vec {b}}_{j}}
#Symmetrische Tensoren und #Kugeltensoren haben keinen dualen axialen Vektor:
A
S
→
A
=
A
K
→
A
=
0
→
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} ^{\mathrm {S} }}}}={\stackrel {A}{\overrightarrow {\mathbf {A} ^{\mathrm {K} }}}}={\vec {0}}}
Ein #Symmetrischer Anteil oder #Kugelanteil trägt nichts zum dualen axialen Vektor bei:
A
→
A
=
A
D
→
A
=
A
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}={\stackrel {A}{\overrightarrow {\mathbf {A} ^{\mathrm {D} }}}}={\stackrel {A}{\overrightarrow {\mathbf {A} ^{\mathrm {A} }}}}}
Seien x eine beliebige Zahl,
u
→
,
v
→
{\displaystyle {\vec {u}},\,{\vec {v}}}
beliebige Vektoren und A, B beliebige Tensoren zweiter Stufe. Dann gilt:
u
→
⊗
v
→
→
A
=
1
2
v
→
×
u
→
{\displaystyle {\stackrel {A}{\overrightarrow {{\vec {u}}\otimes {\vec {v}}}}}\;={\frac {1}{2}}{\vec {v}}\times {\vec {u}}}
A
→
A
×
v
→
=
A
A
⋅
v
→
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}\times {\vec {v}}=\mathbf {A} ^{\mathrm {A} }\cdot {\vec {v}}}
A
⊤
→
A
=
−
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} ^{\top }}}}\quad \;=-{\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
A
+
B
→
A
=
A
→
A
+
B
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A+B} }}}={\stackrel {A}{\overrightarrow {\mathbf {A} }}}+{\stackrel {A}{\overrightarrow {\mathbf {B} }}}}
x
A
→
A
=
x
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {x\mathbf {A} }}}\quad \;=x\,{\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
A
#
B
→
A
=
A
⋅
B
→
A
+
B
⋅
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} \#\mathbf {B} }}}\;=\mathbf {A} \cdot {\stackrel {A}{\overrightarrow {\mathbf {B} }}}+\mathbf {B} \cdot {\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
A
⋅
A
→
A
=
A
⊤
⋅
A
→
A
=
A
→
A
⋅
A
{\displaystyle \mathbf {A} \cdot {\stackrel {A}{\overrightarrow {\mathbf {A} }}}\;=\mathbf {A} ^{\top }\cdot {\stackrel {A}{\overrightarrow {\mathbf {A} }}}={\stackrel {A}{\overrightarrow {\mathbf {A} }}}\cdot \mathbf {A} }
c
o
f
(
A
)
→
A
=
A
⋅
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathrm {cof} (\mathbf {A} )}}}=\mathbf {A} \cdot {\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
A
−
1
→
A
=
−
1
d
e
t
(
A
)
A
⋅
A
→
A
falls
d
e
t
(
A
)
≠
0
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} ^{-1}}}}\quad =-{\frac {1}{\mathrm {det} (\mathbf {A} )}}\mathbf {A} \cdot {\stackrel {A}{\overrightarrow {\mathbf {A} }}}\quad {\text{falls}}\quad \mathrm {det} (\mathbf {A} )\neq 0}
v
→
×
A
→
A
=
1
2
(
S
p
(
A
)
1
−
A
)
⋅
v
→
=
1
2
(
A
⊤
#
1
)
⋅
v
→
{\displaystyle {\stackrel {A}{\overrightarrow {{\vec {v}}\times \mathbf {A} }}}={\frac {1}{2}}(\mathrm {Sp} (\mathbf {A} )\mathbf {1} -\mathbf {A} )\cdot {\vec {v}}={\frac {1}{2}}(\mathbf {A} ^{\top }\#\mathbf {1} )\cdot {\vec {v}}}
v
→
×
1
→
A
=
v
→
{\displaystyle {\stackrel {A}{\overrightarrow {{\vec {v}}\times \mathbf {1} }}}\;\;={\vec {v}}}
(
u
→
×
v
→
)
×
A
→
A
=
1
2
(
u
→
⋅
A
×
v
→
−
v
→
⋅
A
×
u
→
)
{\displaystyle {\stackrel {A}{\overrightarrow {({\vec {u}}\times {\vec {v}})\times \mathbf {A} }}}={\frac {1}{2}}({\vec {u}}\cdot \mathbf {A} \times {\vec {v}}-{\vec {v}}\cdot \mathbf {A} \times {\vec {u}})}
B
⋅
A
⋅
B
⊤
→
A
=
c
o
f
(
B
)
⋅
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {B\cdot A\cdot B} ^{\top }}}}\;\;=\mathrm {cof} (\mathbf {B} )\cdot {\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
Darin ist „#“ ein #Äußeres Tensorprodukt , cof(·) ist der #Kofaktor .
i
→
(
A
)
:=
A
⋅
×
1
=
A
×
1
=
E
3
:
A
=
−
2
A
→
A
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} ):=\mathbf {A} \cdot \!\!\times \mathbf {1} =\mathbf {A} \times \mathbf {1} ={\stackrel {3}{\mathbf {E} }}:\mathbf {A} =-2{\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
i
→
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
i
j
e
^
i
×
e
^
j
=
(
A
23
−
A
32
A
31
−
A
13
A
12
−
A
21
)
{\displaystyle {\vec {\mathrm {i} }}(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\begin{pmatrix}A_{23}-A_{32}\\A_{31}-A_{13}\\A_{12}-A_{21}\end{pmatrix}}}
i
→
(
A
i
j
(
a
→
i
⊗
b
→
j
)
)
=
A
i
j
a
→
i
×
b
→
j
{\displaystyle {\vec {\mathrm {i} }}(A^{ij}({\vec {a}}_{i}\otimes {\vec {b}}_{j}))=A^{ij}{\vec {a}}_{i}\times {\vec {b}}_{j}}
Zusammenhang mit dem #Skalarkreuzprodukt von Tensoren :
A
⋅
×
B
=
i
→
(
A
⋅
B
)
{\displaystyle \mathbf {A} \cdot \!\!\times \mathbf {B} ={\vec {\mathrm {i} }}(\mathbf {A} \cdot \mathbf {B} )}
#Symmetrische Tensoren haben keine Vektorinvariante:
i
→
(
A
S
)
=
0
→
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} ^{\mathrm {S} })={\vec {0}}}
Die Eigenschaften des dualen axialen Vektors sind hierher übertragbar. Seien x eine beliebige Zahl,
u
→
,
v
→
{\displaystyle {\vec {u}},\,{\vec {v}}}
beliebige Vektoren und A, B beliebige Tensoren zweiter Stufe. Dann gilt:
i
→
(
u
→
⊗
v
→
)
=
u
→
×
v
→
{\displaystyle {\vec {\mathrm {i} }}({\vec {u}}\otimes {\vec {v}})\;\;={\vec {u}}\times {\vec {v}}}
i
→
(
A
)
×
v
→
=
−
2
A
A
⋅
v
→
=
(
A
⊤
−
A
)
⋅
v
→
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} )\times {\vec {v}}\;=-2\mathbf {A} ^{\mathrm {A} }\cdot {\vec {v}}=(\mathbf {A^{\top }-A} )\cdot {\vec {v}}}
i
→
(
A
⊤
)
=
−
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} ^{\top })\quad \;=-{\vec {\mathrm {i} }}(\mathbf {A} )}
i
→
(
A
+
B
)
=
i
→
(
A
)
+
i
→
(
B
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A+B} )={\vec {\mathrm {i} }}(\mathbf {A} )+{\vec {\mathrm {i} }}(\mathbf {B} )}
i
→
(
x
A
)
=
x
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(x\mathbf {A} )\quad \;=x\,{\vec {\mathrm {i} }}(\mathbf {A} )}
i
→
(
A
#
B
)
=
A
⋅
i
→
(
B
)
+
B
⋅
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} \#\mathbf {B} )\;=\mathbf {A} \cdot {\vec {\mathrm {i} }}(\mathbf {B} )+\mathbf {B} \cdot {\vec {\mathrm {i} }}(\mathbf {A} )}
A
⋅
i
→
(
A
)
=
A
⊤
⋅
i
→
(
A
)
=
i
→
(
A
)
⋅
A
{\displaystyle \mathbf {A} \cdot {\vec {\mathrm {i} }}(\mathbf {A} )\;=\mathbf {A} ^{\top }\cdot {\vec {\mathrm {i} }}(\mathbf {A} )={\vec {\mathrm {i} }}(\mathbf {A} )\cdot \mathbf {A} }
i
→
(
c
o
f
(
A
)
)
=
A
⋅
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(\mathrm {cof} (\mathbf {A} ))=\mathbf {A} \cdot {\vec {\mathrm {i} }}(\mathbf {A} )}
i
→
(
A
−
1
)
=
−
1
d
e
t
(
A
)
A
⋅
i
→
(
A
)
falls
d
e
t
(
A
)
≠
0
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} ^{-1})\quad =-{\frac {1}{\mathrm {det} (\mathbf {A} )}}\mathbf {A} \cdot {\vec {\mathrm {i} }}(\mathbf {A} )\quad {\text{falls}}\quad \mathrm {det} (\mathbf {A} )\neq 0}
i
→
(
v
→
×
A
)
=
(
A
−
S
p
(
A
)
1
)
⋅
v
→
=
−
(
A
⊤
#
1
)
⋅
v
→
{\displaystyle {\vec {\mathrm {i} }}({\vec {v}}\times \mathbf {A} )\;=(\mathbf {A} -\mathrm {Sp} (\mathbf {A} )\mathbf {1} )\cdot {\vec {v}}=-(\mathbf {A} ^{\top }\#\mathbf {1} )\cdot {\vec {v}}}
i
→
(
v
→
×
1
)
=
−
2
v
→
{\displaystyle {\vec {\mathrm {i} }}({\vec {v}}\times \mathbf {1} )\;\;=-2{\vec {v}}}
i
→
(
(
u
→
×
v
→
)
×
A
)
=
v
→
⋅
A
×
u
→
−
u
→
⋅
A
×
v
→
{\displaystyle {\vec {\mathrm {i} }}(({\vec {u}}\times {\vec {v}})\times \mathbf {A} )={\vec {v}}\cdot \mathbf {A} \times {\vec {u}}-{\vec {u}}\cdot \mathbf {A} \times {\vec {v}}}
i
→
(
B
⋅
A
⋅
B
⊤
)
=
c
o
f
(
B
)
⋅
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {B\cdot A\cdot B} ^{\top })=\mathrm {cof} (\mathbf {B} )\cdot {\vec {\mathrm {i} }}(\mathbf {A} )}
Darin ist „#“ ein #Äußeres Tensorprodukt , cof(·) ist der #Kofaktor .
Definition
A
:=
a
→
⊗
b
→
{\displaystyle \mathbf {A} :={\vec {a}}\otimes {\vec {b}}}
Kofaktor:
c
o
f
(
A
)
=
0
{\displaystyle \mathrm {cof} (\mathbf {A} )=\mathbf {0} }
#Invarianten :
S
p
(
A
)
=
a
→
⋅
b
→
{\displaystyle \mathrm {Sp} (\mathbf {A} )={\vec {a}}\cdot {\vec {b}}}
I
2
(
A
)
=
0
{\displaystyle \mathrm {I} _{2}(\mathbf {A} )=0}
d
e
t
(
A
)
=
0
{\displaystyle \mathrm {det} (\mathbf {A} )=0}
∥
A
∥=
|
a
→
|
|
b
→
|
{\displaystyle \parallel \mathbf {A} \parallel =|{\vec {a}}|\,|{\vec {b}}|}
#Eigensystem :
λ
1
=
a
→
⋅
b
→
,
v
→
1
=
a
→
|
a
→
|
λ
2
=
0
,
v
→
2
=
a
→
×
b
→
|
a
→
×
b
→
|
λ
3
=
0
,
v
→
3
=
(
a
→
×
b
→
)
×
b
→
|
(
a
→
×
b
→
)
×
b
→
|
{\displaystyle {\begin{aligned}\lambda _{1}=&{\vec {a}}\cdot {\vec {b}},&{\vec {v}}_{1}=&{\frac {\vec {a}}{|{\vec {a}}|}}\\\lambda _{2}=&0,&{\vec {v}}_{2}=&{\frac {{\vec {a}}\times {\vec {b}}}{|{\vec {a}}\times {\vec {b}}|}}\\\lambda _{3}=&0,&{\vec {v}}_{3}=&{\frac {({\vec {a}}\times {\vec {b}})\times {\vec {b}}}{|({\vec {a}}\times {\vec {b}})\times {\vec {b}}|}}\end{aligned}}}
Gegeben ein beliebiger Tensor 2. Stufe A . Dieser kann immer als Summe dreier Dyaden dargestellt werden:
A
=
A
i
j
e
^
i
⊗
e
^
j
=
s
→
j
⊗
e
^
j
=
(
s
→
1
s
→
2
s
→
3
)
=
e
^
i
⊗
z
→
i
=
(
z
→
1
z
→
2
z
→
3
)
⊤
=
a
→
k
⊗
g
→
k
{\displaystyle {\begin{aligned}\mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}=&{\vec {s}}_{j}\otimes {\hat {e}}_{j}={\begin{pmatrix}{\vec {s}}_{1}&{\vec {s}}_{2}&{\vec {s}}_{3}\end{pmatrix}}\\=&{\hat {e}}_{i}\otimes {\vec {z}}_{i}={\begin{pmatrix}{\vec {z}}_{1}&{\vec {z}}_{2}&{\vec {z}}_{3}\end{pmatrix}}^{\top }\\=&{\vec {a}}_{k}\otimes {\vec {g}}_{k}\end{aligned}}}
mit Spaltenvektoren
s
→
j
=
A
i
j
e
^
i
=
A
⋅
e
^
j
{\displaystyle {\vec {s}}_{j}=A_{ij}{\hat {e}}_{i}=\mathbf {A} \cdot {\hat {e}}_{j}}
, Zeilenvektoren
z
→
i
=
A
i
j
e
^
j
=
e
^
i
⋅
A
{\displaystyle {\vec {z}}_{i}=A_{ij}{\hat {e}}_{j}={\hat {e}}_{i}\cdot \mathbf {A} }
und
g
→
k
=
(
a
→
k
⋅
e
^
i
)
A
i
j
e
^
j
=
a
→
k
⋅
A
{\displaystyle {\vec {g}}_{k}=({\vec {a}}^{k}\cdot {\hat {e}}_{i})A_{ij}{\hat {e}}_{j}={\vec {a}}^{k}\cdot \mathbf {A} }
.
#Hauptinvarianten (
x
m
,
n
:=
x
→
m
⋅
e
^
n
{\displaystyle x_{m,n}:={\vec {x}}_{m}\cdot {\hat {e}}_{n}}
):
I
1
(
A
)
=
s
i
,
i
=
z
i
,
i
=
a
→
i
⋅
g
→
i
{\displaystyle \mathrm {I} _{1}(\mathbf {A} )=s_{i,i}=z_{i,i}={\vec {a}}_{i}\cdot {\vec {g}}_{i}}
I
2
(
A
)
=
1
2
(
s
i
,
i
s
j
,
j
−
s
i
,
j
s
j
,
i
)
=
1
2
(
z
i
,
i
z
j
,
j
−
z
i
,
j
z
j
,
i
)
=
1
2
[
(
a
→
i
⋅
g
→
i
)
(
a
→
j
⋅
g
→
j
)
−
(
a
→
i
⋅
g
→
j
)
(
a
→
j
⋅
g
→
i
)
]
{\displaystyle {\begin{aligned}\mathrm {I} _{2}(\mathbf {A} )=&{\frac {1}{2}}(s_{i,i}s_{j,j}-s_{i,j}s_{j,i})={\frac {1}{2}}(z_{i,i}z_{j,j}-z_{i,j}z_{j,i})\\=&{\frac {1}{2}}[({\vec {a}}_{i}\cdot {\vec {g}}_{i})({\vec {a}}_{j}\cdot {\vec {g}}_{j})-({\vec {a}}_{i}\cdot {\vec {g}}_{j})({\vec {a}}_{j}\cdot {\vec {g}}_{i})]\end{aligned}}}
I
3
(
A
)
=
|
s
→
1
s
→
2
s
→
3
|
=
|
z
→
1
z
→
2
z
→
3
|
=
|
a
→
1
a
→
2
a
→
3
|
|
g
→
1
g
→
2
g
→
3
|
{\displaystyle \mathrm {I} _{3}(\mathbf {A} )={\begin{vmatrix}{\vec {s}}_{1}&{\vec {s}}_{2}&{\vec {s}}_{3}\end{vmatrix}}={\begin{vmatrix}{\vec {z}}_{1}&{\vec {z}}_{2}&{\vec {z}}_{3}\end{vmatrix}}={\begin{vmatrix}{\vec {a}}_{1}&{\vec {a}}_{2}&{\vec {a}}_{3}\end{vmatrix}}{\begin{vmatrix}{\vec {g}}_{1}&{\vec {g}}_{2}&{\vec {g}}_{3}\end{vmatrix}}}
#Betrag :
∥
A
∥=
s
→
i
⋅
s
→
i
=
z
→
i
⋅
z
→
i
=
(
a
→
i
⋅
a
→
j
)
(
g
→
i
⋅
g
→
j
)
{\displaystyle \parallel \mathbf {A} \parallel ={\sqrt {{\vec {s}}_{i}\cdot {\vec {s}}_{i}}}={\sqrt {{\vec {z}}_{i}\cdot {\vec {z}}_{i}}}={\sqrt {({\vec {a}}_{i}\cdot {\vec {a}}_{j})({\vec {g}}_{i}\cdot {\vec {g}}_{j})}}}
#Dualer axialer Vektor :
A
→
A
=
1
2
e
^
i
×
s
→
i
=
1
2
z
→
i
×
e
^
i
=
1
2
g
→
i
×
a
→
i
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}={\frac {1}{2}}{\hat {e}}_{i}\times {\vec {s}}_{i}={\frac {1}{2}}{\vec {z}}_{i}\times {\hat {e}}_{i}={\frac {1}{2}}{\vec {g}}_{i}\times {\vec {a}}_{i}}
#Vektorinvariante :
i
→
(
A
)
=
s
→
i
×
e
^
i
=
e
^
i
×
z
→
i
=
a
→
i
×
g
→
i
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} )={\vec {s}}_{i}\times {\hat {e}}_{i}={\hat {e}}_{i}\times {\vec {z}}_{i}={\vec {a}}_{i}\times {\vec {g}}_{i}}
#Kofaktor :
c
o
f
(
A
)
=
z
→
i
⊗
s
→
i
−
I
1
(
A
)
A
⊤
+
I
2
(
A
)
1
=
(
a
→
i
⋅
g
→
j
)
g
→
i
⊗
a
→
j
−
(
a
→
i
⋅
g
→
i
)
g
→
j
⊗
a
→
j
+
I
2
(
A
)
1
{\displaystyle {\begin{aligned}\mathrm {cof} (\mathbf {A} )=&{\vec {z}}_{i}\otimes {\vec {s}}_{i}-\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} ^{\top }+\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} \\=&({\vec {a}}_{i}\cdot {\vec {g}}_{j}){\vec {g}}_{i}\otimes {\vec {a}}_{j}-({\vec {a}}_{i}\cdot {\vec {g}}_{i}){\vec {g}}_{j}\otimes {\vec {a}}_{j}+\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} \end{aligned}}}
#Inverse :
A
−
1
=
e
^
i
⊗
s
→
i
=
z
→
i
⊗
e
^
i
=
g
→
i
⊗
a
→
i
{\displaystyle \mathbf {A} ^{-1}={\hat {e}}_{i}\otimes {\vec {s}}^{i}={\vec {z}}^{i}\otimes {\hat {e}}_{i}={\vec {g}}^{i}\otimes {\vec {a}}^{i}}
1
=
e
^
i
⊗
e
^
i
=
δ
i
j
e
^
i
⊗
e
^
j
=
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle \mathbf {1} ={\hat {e}}_{i}\otimes {\hat {e}}_{i}=\delta _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
1
=
g
→
i
⊗
g
→
i
=
g
→
i
⊗
g
→
i
=
g
i
j
g
→
i
⊗
g
→
j
=
g
i
j
g
→
i
⊗
g
→
j
{\displaystyle \mathbf {1} ={\vec {g}}_{i}\otimes {\vec {g}}^{i}={\vec {g}}^{i}\otimes {\vec {g}}_{i}=g^{ij}{\vec {g}}_{i}\otimes {\vec {g}}_{j}=g_{ij}{\vec {g}}^{i}\otimes {\vec {g}}^{j}}
mit
g
i
j
=
g
→
i
⋅
g
→
j
,
g
i
j
=
g
→
i
⋅
g
→
j
{\displaystyle g_{ij}={\vec {g}}_{i}\cdot {\vec {g}}_{j}\,,\;g^{ij}={\vec {g}}^{i}\cdot {\vec {g}}^{j}}
Allgemein:
1
=
(
a
→
i
⋅
g
→
j
)
a
→
i
⊗
g
→
j
{\displaystyle \mathbf {1} =({\vec {a}}^{i}\cdot {\vec {g}}^{j}){\vec {a}}_{i}\otimes {\vec {g}}_{j}}
#Transposition und #Inverse :
1
=
1
⊤
=
1
−
1
=
1
⊤
−
1
{\displaystyle \mathbf {1} =\mathbf {1} ^{\top }=\mathbf {1} ^{-1}=\mathbf {1} ^{\top -1}}
Kofaktor:
c
o
f
(
1
)
=
1
{\displaystyle \mathrm {cof} (\mathbf {1} )=\mathbf {1} }
Vektortransformation
1
⋅
v
→
=
v
→
⋅
1
=
v
→
{\displaystyle \mathbf {1} \cdot {\vec {v}}={\vec {v}}\cdot \mathbf {1} ={\vec {v}}}
Tensorprodukt
A
⋅
1
=
1
⋅
A
=
A
{\displaystyle \mathbf {A\cdot 1} =\mathbf {1\cdot A} =\mathbf {A} }
Skalarprodukt
A
:
1
=
S
p
(
A
)
{\displaystyle \mathbf {A} :\mathbf {1} =\mathrm {Sp} (\mathbf {A} )}
#Invarianten :
S
p
(
1
)
=
1
:
1
=
3
{\displaystyle \mathrm {Sp} (\mathbf {1} )=\mathbf {1} :\mathbf {1} =3}
I
2
(
1
)
=
3
{\displaystyle \mathrm {I} _{2}(\mathbf {1} )=3}
d
e
t
(
1
)
=
1
{\displaystyle \mathrm {det} (\mathbf {1} )=1}
∥
1
∥=
3
{\displaystyle \parallel \mathbf {1} \parallel ={\sqrt {3}}}
#Eigenwerte :
λ
1
,
2
,
3
=
1
{\displaystyle \lambda _{1,2,3}=1}
Alle Vektoren sind #Eigenvektoren .
Definition
H
:
d
e
t
(
H
)
=
1
{\displaystyle \mathbf {H} :\quad \mathrm {det} (\mathbf {H} )=1}
Kofaktor:
c
o
f
(
H
)
=
H
⊤
−
1
{\displaystyle \mathrm {cof} (\mathbf {H} )=\mathbf {H} ^{\top -1}}
Determinantenproduktsatz:
d
e
t
(
A
⋅
H
)
=
d
e
t
(
H
⋅
A
)
=
d
e
t
(
A
)
{\displaystyle \mathrm {det} (\mathbf {A\cdot H} )=\mathrm {det} (\mathbf {H\cdot A} )=\mathrm {det} (\mathbf {A} )}
Definition
Q
:
Q
−
1
=
Q
⊤
oder
Q
⋅
Q
⊤
=
Q
⊤
⋅
Q
=
1
{\displaystyle \mathbf {Q} :\quad \mathbf {Q} ^{-1}=\mathbf {Q} ^{\top }\quad {\textsf {oder}}\quad \mathbf {Q\cdot Q} ^{\top }=\mathbf {Q} ^{\top }\cdot \mathbf {Q} =\mathbf {1} }
Kofaktor:
c
o
f
(
Q
)
=
d
e
t
(
Q
)
Q
=
±
Q
{\displaystyle \mathrm {cof} (\mathbf {Q} )=\mathrm {det} (\mathbf {Q} )\mathbf {Q} =\pm \mathbf {Q} }
#Invarianten (
α
{\displaystyle \alpha }
ist der Drehwinkel):
S
p
(
Q
)
=
d
e
t
(
Q
)
+
2
cos
(
α
)
{\displaystyle \mathrm {Sp} (\mathbf {Q} )=\mathrm {det} (\mathbf {Q} )+2\cos(\alpha )}
I
2
(
Q
)
=
d
e
t
(
Q
)
⋅
S
p
(
Q
)
=
1
+
2
d
e
t
(
Q
)
cos
(
α
)
{\displaystyle \mathrm {I} _{2}(\mathbf {Q} )=\mathrm {det} (\mathbf {Q} )\cdot \mathrm {Sp} (\mathbf {Q} )=1+2\,\mathrm {det} (\mathbf {Q} )\cos(\alpha )}
d
e
t
(
Q
)
=
±
1
{\displaystyle \mathrm {det} (\mathbf {Q} )=\pm 1}
∥
Q
∥=
3
{\displaystyle \parallel \mathbf {Q} \parallel ={\sqrt {3}}}
Eigentlich orthogonaler Tensor
d
e
t
(
Q
)
=
+
1
{\displaystyle \mathrm {det} (\mathbf {Q} )=+1}
, entspricht einer Drehung.
Uneigentlich orthogonaler Tensor
d
e
t
(
Q
)
=
−
1
{\displaystyle \mathrm {det} (\mathbf {Q} )=-1}
, entspricht einer Drehspiegelung.
Spatprodukt:
(
Q
⋅
a
→
)
⋅
[
(
Q
⋅
b
→
)
×
(
Q
⋅
c
→
)
]
=
d
e
t
(
Q
)
a
→
⋅
(
b
→
×
c
→
)
{\displaystyle (\mathbf {Q} \cdot {\vec {a}})\cdot [(\mathbf {Q} \cdot {\vec {b}})\times (\mathbf {Q} \cdot {\vec {c}})]=\mathrm {det} (\mathbf {Q} ){\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})}
Kreuzprodukt und #Kofaktor :
(
Q
⋅
a
→
)
×
(
Q
⋅
b
→
)
=
d
e
t
(
Q
)
Q
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {Q} \cdot {\vec {a}})\times (\mathbf {Q} \cdot {\vec {b}})=\mathrm {det} (\mathbf {Q} )\mathbf {Q} \cdot ({\vec {a}}\times {\vec {b}})}
c
o
f
(
Q
)
=
d
e
t
(
Q
)
Q
{\displaystyle \mathrm {cof} (\mathbf {Q} )=\mathrm {det} (\mathbf {Q} )\mathbf {Q} }
Gegeben ein Einheitsvektor
n
^
=
(
n
1
n
2
n
3
)
⊤
{\displaystyle {\hat {n}}={\begin{pmatrix}n_{1}&n_{2}&n_{3}\end{pmatrix}}^{\top }}
und Drehwinkel α . Dann sind die folgenden Tensoren R zueinander gleich, orthogonal und drehen um die Achse
n
^
{\displaystyle {\hat {n}}}
mit Winkel α :
Rodrigues-Formel :
R
=
1
+
s
α
n
^
×
1
+
d
α
(
n
^
×
1
)
2
=
1
+
s
α
n
^
×
1
+
d
α
(
n
^
⊗
n
^
−
1
)
{\displaystyle {\begin{aligned}\mathbf {R} =&\mathbf {1} +s_{\alpha }{\hat {n}}\times \mathbf {1} +d_{\alpha }({\hat {n}}\times \mathbf {1} )^{2}\\=&\mathbf {1} +s_{\alpha }{\hat {n}}\times \mathbf {1} +d_{\alpha }({\hat {n}}\otimes {\hat {n}}-\mathbf {1} )\end{aligned}}}
R
=
(
c
α
+
d
α
n
1
2
−
s
α
n
3
+
d
α
n
1
n
2
s
α
n
2
+
d
α
n
1
n
3
s
α
n
3
+
d
α
n
1
n
2
c
α
+
d
α
n
2
2
−
s
α
n
1
+
d
α
n
2
n
3
−
s
α
n
2
+
d
α
n
1
n
3
s
α
n
1
+
d
α
n
2
n
3
c
α
+
d
α
n
3
2
)
{\displaystyle \mathbf {R} ={\begin{pmatrix}c_{\alpha }+d_{\alpha }n_{1}^{2}&-s_{\alpha }n_{3}+d_{\alpha }n_{1}n_{2}&s_{\alpha }n_{2}+d_{\alpha }n_{1}n_{3}\\s_{\alpha }n_{3}+d_{\alpha }n_{1}n_{2}&c_{\alpha }+d_{\alpha }n_{2}^{2}&-s_{\alpha }n_{1}+d_{\alpha }n_{2}n_{3}\\-s_{\alpha }n_{2}+d_{\alpha }n_{1}n_{3}&s_{\alpha }n_{1}+d_{\alpha }n_{2}n_{3}&c_{\alpha }+d_{\alpha }n_{3}^{2}\end{pmatrix}}}
mit
c
α
=
cos
(
α
)
,
d
α
=
1
−
cos
(
α
)
,
s
α
=
sin
(
α
)
{\displaystyle c_{\alpha }=\cos(\alpha ),\;d_{\alpha }=1-\cos(\alpha ),\;s_{\alpha }=\sin(\alpha )}
.
Euler-Rodrigues-Formel :
a
=
cos
(
α
2
)
,
b
=
sin
(
α
2
)
n
1
,
c
=
sin
(
α
2
)
n
2
,
d
=
sin
(
α
2
)
n
3
{\displaystyle a=\cos \left({\tfrac {\alpha }{2}}\right),b=\sin \left({\tfrac {\alpha }{2}}\right)n_{1},c=\sin \left({\tfrac {\alpha }{2}}\right)n_{2},d=\sin \left({\tfrac {\alpha }{2}}\right)n_{3}}
also
a
2
+
b
2
+
c
2
+
d
2
=
1
{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=1}
:
R
:=
(
a
2
+
b
2
−
c
2
−
d
2
2
(
b
c
−
a
d
)
2
(
b
d
+
a
c
)
2
(
b
c
+
a
d
)
a
2
+
c
2
−
b
2
−
d
2
2
(
c
d
−
a
b
)
2
(
b
d
−
a
c
)
2
(
c
d
+
a
b
)
a
2
+
d
2
−
b
2
−
c
2
)
{\displaystyle \mathbf {R} :={\begin{pmatrix}a^{2}+b^{2}-c^{2}-d^{2}&2(bc-ad)&2(bd+ac)\\2(bc+ad)&a^{2}+c^{2}-b^{2}-d^{2}&2(cd-ab)\\2(bd-ac)&2(cd+ab)&a^{2}+d^{2}-b^{2}-c^{2}\end{pmatrix}}}
Formulierung mit Drehvektor:
Drehvektor
Orthogonaler Tensor
α
→
=
α
n
→
{\displaystyle {\vec {\alpha }}=\alpha {\vec {n}}}
→
R
=
1
+
sin
(
α
)
α
α
→
×
1
+
1
−
cos
(
α
)
α
2
(
α
→
×
1
)
2
{\displaystyle \mathbf {R} =\mathbf {1} +{\frac {\sin(\alpha )}{\alpha }}{\vec {\alpha }}\times \mathbf {1} +{\frac {1-\cos(\alpha )}{\alpha ^{2}}}({\vec {\alpha }}\times \mathbf {1} )^{2}}
α
→
=
tan
(
α
)
n
→
{\displaystyle {\vec {\alpha }}=\tan(\alpha ){\vec {n}}}
→
R
=
1
+
cos
(
α
)
α
→
×
1
+
cos
2
(
α
)
1
+
cos
(
α
)
(
α
→
×
1
)
2
{\displaystyle \mathbf {R} =\mathbf {1} +\cos(\alpha ){\vec {\alpha }}\times \mathbf {1} +{\frac {\cos ^{2}(\alpha )}{1+\cos(\alpha )}}({\vec {\alpha }}\times \mathbf {1} )^{2}}
α
→
=
tan
(
α
2
)
n
→
{\displaystyle {\vec {\alpha }}=\tan \left({\frac {\alpha }{2}}\right)\;{\vec {n}}}
→
R
=
1
+
2
1
+
α
→
⋅
α
→
(
α
→
×
1
+
(
α
→
×
1
)
2
)
{\displaystyle \mathbf {R} =\mathbf {1} +{\frac {2}{1+{\vec {\alpha }}\cdot {\vec {\alpha }}}}({\vec {\alpha }}\times \mathbf {1} +({\vec {\alpha }}\times \mathbf {1} )^{2})}
α
→
=
sin
(
α
)
n
→
{\displaystyle {\vec {\alpha }}=\sin(\alpha )\;{\vec {n}}}
→
R
=
1
+
α
→
×
1
+
1
1
+
cos
(
α
)
(
α
→
×
1
)
2
{\displaystyle \mathbf {R} =\mathbf {1} +{\vec {\alpha }}\times \mathbf {1} +{\dfrac {1}{1+\cos(\alpha )}}({\vec {\alpha }}\times \mathbf {1} )^{2}}
α
→
=
sin
(
α
2
)
n
→
{\displaystyle {\vec {\alpha }}=\sin \left({\frac {\alpha }{2}}\right)\;{\vec {n}}}
→
R
=
1
+
2
cos
(
α
2
)
α
→
×
1
+
2
(
α
→
×
1
)
2
{\displaystyle \mathbf {R} =\mathbf {1} +2\cos \left({\frac {\alpha }{2}}\right){\vec {\alpha }}\times \mathbf {1} +2({\vec {\alpha }}\times \mathbf {1} )^{2}}
α
→
=
cos
(
α
)
n
→
{\displaystyle {\vec {\alpha }}=\cos(\alpha )\;{\vec {n}}}
→
R
=
1
+
tan
(
α
)
α
→
×
1
+
1
−
cos
(
α
)
α
→
⋅
α
→
(
α
→
×
1
)
2
{\displaystyle \mathbf {R} =\mathbf {1} +\tan(\alpha ){\vec {\alpha }}\times \mathbf {1} +{\frac {1-\cos(\alpha )}{{\vec {\alpha }}\cdot {\vec {\alpha }}}}({\vec {\alpha }}\times \mathbf {1} )^{2}}
α
→
=
cos
(
α
2
)
n
→
{\displaystyle {\vec {\alpha }}=\cos \left({\frac {\alpha }{2}}\right)\;{\vec {n}}}
→
R
=
1
+
2
sin
(
α
2
)
α
→
×
1
+
2
1
−
α
→
⋅
α
→
α
→
⋅
α
→
(
α
→
×
1
)
2
{\displaystyle \mathbf {R} =\mathbf {1} +2\sin \left({\frac {\alpha }{2}}\right){\vec {\alpha }}\times \mathbf {1} +2{\frac {1-{\vec {\alpha }}\cdot {\vec {\alpha }}}{{\vec {\alpha }}\cdot {\vec {\alpha }}}}({\vec {\alpha }}\times \mathbf {1} )^{2}}
Darin ist
(
α
→
×
1
)
2
=
(
α
→
×
1
)
⋅
(
α
→
×
1
)
=
α
→
⊗
α
→
−
(
α
→
⋅
α
→
)
1
{\displaystyle ({\vec {\alpha }}\times \mathbf {1} )^{2}=({\vec {\alpha }}\times \mathbf {1} )\cdot ({\vec {\alpha }}\times \mathbf {1} )={\vec {\alpha }}\otimes {\vec {\alpha }}-({\vec {\alpha }}\cdot {\vec {\alpha }})\mathbf {1} }
Beispiel für Drehspiegelung:
Q
=
−
1
+
sin
(
α
)
n
^
×
1
−
(
1
+
cos
(
α
)
)
(
n
^
×
1
)
2
{\displaystyle \mathbf {Q} =-\mathbf {1} +\sin(\alpha ){\hat {n}}\times \mathbf {1} -(1+\cos(\alpha ))({\hat {n}}\times \mathbf {1} )^{2}}
Drehung von Vektorraumbasis
u
→
1
,
2
,
3
nach
v
→
1
,
2
,
3
{\displaystyle {\vec {u}}_{1,2,3}\;{\textsf {nach}}\;{\vec {v}}_{1,2,3}}
mit Drehachse
n
^
{\displaystyle {\hat {n}}}
:
Q
⋅
u
→
i
=
v
→
i
,
Q
⋅
u
→
i
=
v
→
i
,
Q
=
v
→
i
⊗
u
→
i
=
v
→
i
⊗
u
→
i
{\displaystyle \mathbf {Q} \cdot {\vec {u}}_{i}={\vec {v}}_{i}\,,\quad \mathbf {Q} \cdot {\vec {u}}^{i}={\vec {v}}^{i}\,,\quad \mathbf {Q} ={\vec {v}}_{i}\otimes {\vec {u}}^{i}={\vec {v}}^{i}\otimes {\vec {u}}_{i}}
n
^
≃
v
→
i
×
u
→
i
=
v
→
i
×
u
→
i
=
−
2
Q
→
A
=
i
→
(
Q
)
{\displaystyle {\hat {n}}\simeq {\vec {v}}_{i}\times {\vec {u}}^{i}={\vec {v}}^{i}\times {\vec {u}}_{i}=-2{\stackrel {A}{\overrightarrow {\mathbf {Q} }}}={\vec {\mathrm {i} }}(\mathbf {Q} )}
mit #Dualer axialer Vektor
Q
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {Q} }}}}
und #Vektorinvariante
i
→
(
Q
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {Q} )}
.
Gegeben Orthonormalbasis
v
^
1
,
2
,
3
{\displaystyle {\hat {v}}_{1,2,3}}
, Drehwinkel
α
{\displaystyle \alpha }
und
v
^
1
{\displaystyle {\hat {v}}_{1}}
ist Drehachse:
Q
=
±
v
^
1
⊗
v
^
1
+
cos
(
α
)
(
v
^
2
⊗
v
^
2
+
v
^
3
⊗
v
^
3
)
+
sin
(
α
)
(
v
^
3
⊗
v
^
2
−
v
^
2
⊗
v
^
3
)
=
(
±
1
0
0
0
cos
(
α
)
−
sin
(
α
)
0
sin
(
α
)
cos
(
α
)
)
v
^
i
⊗
v
^
j
{\displaystyle {\begin{aligned}\mathbf {Q} =&{\color {red}\pm }{\hat {v}}_{1}\otimes {\hat {v}}_{1}+\cos(\alpha )({\hat {v}}_{2}\otimes {\hat {v}}_{2}+{\hat {v}}_{3}\otimes {\hat {v}}_{3})+\sin(\alpha )({\hat {v}}_{3}\otimes {\hat {v}}_{2}-{\hat {v}}_{2}\otimes {\hat {v}}_{3})\\=&{\begin{pmatrix}{\color {red}\pm 1}&0&0\\0&\cos(\alpha )&-\sin(\alpha )\\0&\sin(\alpha )&\cos(\alpha )\end{pmatrix}}_{{\hat {v}}_{i}\otimes {\hat {v}}_{j}}\end{aligned}}}
+
1
{\displaystyle {\color {red}+1}}
: Drehung,
−
1
{\displaystyle {\color {red}-1}}
: Drehspiegelung um
v
^
1
{\displaystyle {\hat {v}}_{1}}
Wenn
v
^
1
,
2
,
3
{\displaystyle {\hat {v}}_{1,2,3}}
ein Rechtssystem (Mathematik) bilden, dann dreht Q gegen den Uhrzeigersinn, sonst im Uhrzeigersinn um die Drehachse.
#Eigensystem :
λ
1
=
d
e
t
(
Q
)
,
q
→
1
=
v
^
1
λ
2
=
e
i
α
,
q
→
2
=
1
2
(
v
^
2
−
i
v
^
3
)
.
λ
3
=
e
−
i
α
,
q
→
3
=
1
2
(
v
^
2
+
i
v
^
3
)
{\displaystyle {\begin{aligned}\lambda _{1}=&\mathrm {det} (\mathbf {Q} )\,,&{\vec {q}}_{1}=&{\hat {v}}_{1}\\\lambda _{2}=&e^{\mathrm {i} \alpha },&{\vec {q}}_{2}=&{\frac {1}{\sqrt {2}}}({\hat {v}}_{2}-\mathrm {i} {\hat {v}}_{3}).\\\lambda _{3}=&e^{-\mathrm {i} \alpha },&{\vec {q}}_{3}=&{\frac {1}{\sqrt {2}}}({\hat {v}}_{2}+\mathrm {i} {\hat {v}}_{3})\end{aligned}}}
Drehwinkel:
cos
(
α
)
=
1
2
(
S
p
(
Q
)
−
d
e
t
(
Q
)
)
{\displaystyle \cos(\alpha )={\frac {1}{2}}(\mathrm {Sp} (\mathbf {Q} )-\mathrm {det} (\mathbf {Q} ))}
Drehachse
n
^
{\displaystyle {\hat {n}}}
ist #Vektorinvariante :
n
^
≃
i
→
(
Q
)
=
1
⋅
×
Q
{\displaystyle {\hat {n}}\simeq {\vec {\mathrm {i} }}(\mathbf {Q} )=\mathbf {1} \cdot \!\!\times \mathbf {Q} }
Q
=
s
→
i
⊗
e
→
i
=
e
→
i
⊗
z
→
i
→
n
^
≃
s
→
i
×
e
→
i
=
e
→
i
×
z
→
i
{\displaystyle \mathbf {Q} ={\vec {s}}_{i}\otimes {\vec {e}}_{i}={\vec {e}}_{i}\otimes {\vec {z}}_{i}\quad \rightarrow \quad {\hat {n}}\simeq {\vec {s}}_{i}\times {\vec {e}}_{i}={\vec {e}}_{i}\times {\vec {z}}_{i}}
1
2
(
Q
−
Q
⊤
)
=
sin
(
α
)
n
^
×
1
=
sin
(
α
)
(
0
−
n
3
n
2
n
3
0
−
n
1
−
n
2
n
1
0
)
,
|
n
^
|
=
1
{\displaystyle {\frac {1}{2}}(\mathbf {Q} -\mathbf {Q} ^{\top })=\sin(\alpha ){\hat {n}}\times \mathbf {1} =\sin(\alpha ){\begin{pmatrix}0&-n_{3}&n_{2}\\n_{3}&0&-n_{1}\\-n_{2}&n_{1}&0\end{pmatrix}},\quad |{\hat {n}}|=1}
Definition
A
:
v
→
⋅
A
⋅
v
→
>
0
∀
v
→
∈
V
∖
{
0
→
}
{\displaystyle \mathbf {A} :\quad {\vec {v}}\cdot \mathbf {A} \cdot {\vec {v}}>0\quad \forall \;{\vec {v}}\in \mathbb {V} \setminus \{{\vec {0}}\}}
Kofaktor:
c
o
f
(
A
)
=
A
⊤
⋅
A
⊤
−
I
1
(
A
)
A
⊤
+
I
2
(
A
)
1
=
det
(
A
)
A
⊤
−
1
{\displaystyle \mathrm {cof} (\mathbf {A} )=\mathbf {A^{\top }\cdot A^{\top }} -\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} ^{\top }+\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} =\det(\mathbf {A} )\mathbf {A} ^{\top -1}}
Notwendige Bedingungen für positive Definitheit:
d
e
t
(
A
)
>
0
{\displaystyle \mathrm {det} (\mathbf {A} )>0}
A
=
A
i
j
e
^
i
⊗
e
^
j
→
A
11
,
A
22
,
A
33
>
0
{\displaystyle \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\quad \rightarrow \quad A_{11},\,A_{22},\,A_{33}>0}
A
=
A
j
i
a
→
i
⊗
a
→
j
→
A
1
1
,
A
2
2
,
A
3
3
>
0
{\displaystyle \mathbf {A} =A_{j}^{i}{\vec {a}}_{i}\otimes {\vec {a}}^{j}\quad \rightarrow \quad A_{1}^{1},\,A_{2}^{2},\,A_{3}^{3}>0}
Notwendige und hinreichende Bedingung für positive Definitheit: Alle #Eigenwerte von A sind größer als null.
Immer positiv definit falls det(A ) ≠ 0:
A·A ⊤ und A⊤ ·A
Definition
A
:
A
=
A
⊤
{\displaystyle \mathbf {A} :\quad \mathbf {A} =\mathbf {A} ^{\top }}
Kofaktor:
c
o
f
(
A
)
=
a
d
j
(
A
)
=
A
2
−
S
p
(
A
)
A
+
I
2
(
A
)
1
{\displaystyle \mathrm {cof} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )=\mathbf {A} ^{2}-\mathrm {Sp} (\mathbf {A} )\mathbf {A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} }
#Betrag :
∥
A
∥=
S
p
2
(
A
)
−
2
I
2
(
A
)
=
S
p
(
A
2
)
=
λ
1
2
+
λ
2
2
+
λ
3
2
{\displaystyle \quad \parallel \mathbf {A} \parallel ={\sqrt {\mathrm {Sp} ^{2}(\mathbf {A} )-2\mathrm {I} _{2}(\mathbf {A} )}}={\sqrt {\mathrm {Sp} (\mathbf {A} ^{2})}}={\sqrt {\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}}}}
Bei Symmetrischen Tensoren verschwinden ihr #Dualer axialer Vektor und ihre #Vektorinvariante :
A
S
→
A
=
i
→
(
A
S
)
=
0
→
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} ^{\mathrm {S} }}}}={\vec {\mathrm {i} }}(\mathbf {A} ^{\mathrm {S} })={\vec {0}}}
Bilinearform:
u
→
⋅
A
⋅
v
→
=
v
→
⋅
A
⋅
u
→
∀
u
→
,
v
→
∈
V
{\displaystyle {\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}={\vec {v}}\cdot \mathbf {A} \cdot {\vec {u}}\quad \forall {\vec {u}},{\vec {v}}\in \mathbb {V} }
Alle #Eigenwerte λ1,2,3 sind reell. Alle #Eigenvektoren
a
→
1
,
2
,
3
{\displaystyle {\vec {a}}_{1,2,3}}
sind reell und paarweise orthogonal zueinander oder orthogonalisierbar. Hauptachsentransformation :
A
=
∑
i
=
1
3
λ
i
a
^
i
⊗
a
^
i
=
(
a
^
i
⊗
e
^
i
)
(
∑
i
=
1
3
λ
j
e
^
j
⊗
e
^
j
)
(
e
^
k
⊗
a
^
k
)
=
(
a
^
1
a
^
2
a
^
3
)
⋅
(
λ
1
0
0
0
λ
2
0
0
0
λ
3
)
⋅
(
a
^
1
a
^
2
a
^
3
)
⊤
{\displaystyle {\begin{aligned}\mathbf {A} =&\sum _{i=1}^{3}\lambda _{i}{\hat {a}}_{i}\otimes {\hat {a}}_{i}=({\hat {a}}_{i}\otimes {\hat {e}}_{i})\left(\sum _{i=1}^{3}\lambda _{j}{\hat {e}}_{j}\otimes {\hat {e}}_{j}\right)({\hat {e}}_{k}\otimes {\hat {a}}_{k})\\=&{\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}\cdot {\begin{pmatrix}\lambda _{1}&0&0\\0&\lambda _{2}&0\\0&0&\lambda _{3}\end{pmatrix}}\cdot {\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}^{\top }\end{aligned}}}
Bezüglich der Standardbasis:
A
=
A
i
j
e
^
i
⊗
e
^
j
=
(
A
11
A
12
A
13
A
12
A
22
A
23
A
13
A
23
A
33
)
{\displaystyle \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}={\begin{pmatrix}A_{11}&A_{12}&A_{13}\\A_{12}&A_{22}&A_{23}\\A_{13}&A_{23}&A_{33}\end{pmatrix}}}
#Invarianten :
S
p
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
11
+
A
22
+
A
33
{\displaystyle \mathrm {Sp} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{11}+A_{22}+A_{33}}
I
2
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
11
A
22
+
A
11
A
33
+
A
22
A
33
−
A
12
2
−
A
13
2
−
A
23
2
{\displaystyle \mathrm {I} _{2}(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{11}A_{22}+A_{11}A_{33}+A_{22}A_{33}-A_{12}^{2}-A_{13}^{2}-A_{23}^{2}}
d
e
t
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
11
(
A
22
A
33
−
A
23
2
)
+
A
12
(
A
23
A
13
−
A
12
A
33
)
+
A
13
(
A
12
A
23
−
A
13
A
22
)
{\displaystyle {\begin{aligned}\mathrm {det} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=&A_{11}(A_{22}A_{33}-A_{23}^{2})+A_{12}(A_{23}A_{13}-A_{12}A_{33})\\&+A_{13}(A_{12}A_{23}-A_{13}A_{22})\end{aligned}}}
∥
A
i
j
e
^
i
⊗
e
^
j
∥=
A
11
2
+
A
22
2
+
A
33
2
+
2
A
12
2
+
2
A
13
2
+
2
A
23
2
{\displaystyle \parallel A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\parallel ={\sqrt {A_{11}^{2}+A_{22}^{2}+A_{33}^{2}+2A_{12}^{2}+2A_{13}^{2}+2A_{23}^{2}}}}
Symmetrische und positiv definite Tensoren
Bearbeiten
Definition
A
:
A
=
A
⊤
und
v
→
⋅
A
⋅
v
→
>
0
∀
v
→
∈
V
∖
{
0
→
}
{\displaystyle \mathbf {A} :\quad \mathbf {A} =\mathbf {A} ^{\top }\quad {\text{und}}\quad {\vec {v}}\cdot \mathbf {A} \cdot {\vec {v}}>0\quad \forall \;{\vec {v}}\in \mathbb {V} \setminus \{{\vec {0}}\}}
Kofaktor:
c
o
f
(
A
)
=
a
d
j
(
A
)
=
d
e
t
(
A
)
A
−
1
=
A
2
−
S
p
(
A
)
A
+
I
2
(
A
)
1
{\displaystyle \mathrm {cof} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )=\mathrm {det} (\mathbf {A} )\mathbf {A} ^{-1}=\mathbf {A} ^{2}-\mathrm {Sp} (\mathbf {A} )\mathbf {A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} }
Mit den #Eigenwerten
λ
1
,
λ
2
,
λ
3
{\displaystyle \lambda _{1},\,\lambda _{2},\,\lambda _{3}}
, den #Eigenvektoren
a
^
1
,
a
^
2
,
a
^
3
{\displaystyle {\hat {a}}_{1},\,{\hat {a}}_{2},\,{\hat {a}}_{3}}
und einer reellwertigen Funktion
f
(
x
)
∈
R
{\displaystyle f(x)\in \mathbb {R} }
eines reellen Argumentes
x
∈
R
{\displaystyle x\in \mathbb {R} }
definiert man über das #Eigensystem symmetrischer Tensoren
A
=
∑
i
=
1
3
λ
i
a
^
i
⊗
a
^
i
=
(
a
^
1
a
^
2
a
^
3
)
⋅
(
λ
1
0
0
0
λ
2
0
0
0
λ
3
)
⋅
(
a
^
1
a
^
2
a
^
3
)
⊤
{\displaystyle {\begin{aligned}\mathbf {A} =&\sum _{i=1}^{3}\lambda _{i}{\hat {a}}_{i}\otimes {\hat {a}}_{i}\\=&{\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}\cdot {\begin{pmatrix}\lambda _{1}&0&0\\0&\lambda _{2}&0\\0&0&\lambda _{3}\end{pmatrix}}\cdot {\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}^{\top }\end{aligned}}}
den Funktionswert des Tensors:
f
(
A
)
:=
∑
i
=
1
3
f
(
λ
i
)
a
^
i
⊗
a
^
i
=
(
a
^
1
a
^
2
a
^
3
)
⋅
(
f
(
λ
1
)
0
0
0
f
(
λ
2
)
0
0
0
f
(
λ
3
)
)
⋅
(
a
^
1
a
^
2
a
^
3
)
⊤
{\displaystyle {\begin{aligned}f(\mathbf {A} ):=&\sum _{i=1}^{3}f(\lambda _{i}){\hat {a}}_{i}\otimes {\hat {a}}_{i}\\=&{\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}\cdot {\begin{pmatrix}f(\lambda _{1})&0&0\\0&f(\lambda _{2})&0\\0&0&f(\lambda _{3})\end{pmatrix}}\cdot {\begin{pmatrix}{\hat {a}}_{1}&{\hat {a}}_{2}&{\hat {a}}_{3}\end{pmatrix}}^{\top }\end{aligned}}}
Ist f eine mehrdeutige Funktion, wie die Wurzel (Mathematik) , mit n alternativen Werten, dann steht f (A ) mehrdeutig für n 3 alternative Tensoren.
Insbesondere mit dem Deformationsgradient F :
Rechter Strecktensor
U
=
+
F
⊤
⋅
F
{\displaystyle \mathbf {U} =+{\sqrt {\mathbf {F} ^{\top }\cdot \mathbf {F} }}}
Linker Strecktensor
v
=
+
F
⋅
F
⊤
{\displaystyle \mathbf {v} =+{\sqrt {\mathbf {F\cdot F} ^{\top }}}}
Henky-Dehnung
E
H
:=
ln
(
U
)
=
1
2
ln
(
F
⊤
⋅
F
)
{\displaystyle \mathbf {E} _{H}:=\ln(\mathbf {U} )={\frac {1}{2}}\ln(\mathbf {F} ^{\top }\cdot \mathbf {F} )}
Voigt-Notation symmetrischer Tensoren zweiter Stufe
Bearbeiten
Die Tensoren
S
1
=
e
→
1
⊗
e
→
1
S
2
=
e
→
2
⊗
e
→
2
S
3
=
e
→
3
⊗
e
→
3
S
4
=
e
→
2
⊗
e
→
3
+
e
→
3
⊗
e
→
2
S
5
=
e
→
1
⊗
e
→
3
+
e
→
3
⊗
e
→
1
S
6
=
e
→
1
⊗
e
→
2
+
e
→
2
⊗
e
→
1
{\displaystyle {\begin{aligned}\mathbf {S} _{1}=&{\vec {e}}_{1}\otimes {\vec {e}}_{1}\\\mathbf {S} _{2}=&{\vec {e}}_{2}\otimes {\vec {e}}_{2}\\\mathbf {S} _{3}=&{\vec {e}}_{3}\otimes {\vec {e}}_{3}\\\mathbf {S} _{4}=&{\vec {e}}_{2}\otimes {\vec {e}}_{3}+{\vec {e}}_{3}\otimes {\vec {e}}_{2}\\\mathbf {S} _{5}=&{\vec {e}}_{1}\otimes {\vec {e}}_{3}+{\vec {e}}_{3}\otimes {\vec {e}}_{1}\\\mathbf {S} _{6}=&{\vec {e}}_{1}\otimes {\vec {e}}_{2}+{\vec {e}}_{2}\otimes {\vec {e}}_{1}\end{aligned}}}
bilden eine Basis im Vektorraum
s
y
m
(
V
,
V
)
⊂
L
{\displaystyle \mathrm {sym} (\mathbb {V} ,\mathbb {V} )\subset {\mathcal {L}}}
der symmetrischen Tensoren zweiter Stufe. Bezüglich dieser Basis können alle symmetrischen Tensoren zweiter Stufe in Voigt'scher Notation dargestellt werden:
A
∈
s
y
m
(
V
,
V
)
→
A
=
A
r
S
r
=
^
[
A
1
A
2
A
3
A
4
A
5
A
6
]
{\displaystyle \mathbf {A} \in \mathrm {sym} (\mathbb {V} ,\mathbb {V} )\quad \rightarrow \quad \mathbf {A} =A_{r}\mathbf {S} _{r}{\hat {=}}{\begin{bmatrix}A_{1}\\A_{2}\\A_{3}\\A_{4}\\A_{5}\\A_{6}\end{bmatrix}}}
Diese Vektoren dürfen addiert, subtrahiert und mit einem Skalar multipliziert werden. Beim Skalarprodukt muss
A
:
B
=
A
1
B
1
+
A
2
B
2
+
A
3
B
3
+
2
A
4
B
4
+
2
A
5
B
5
+
2
A
6
B
6
{\displaystyle \mathbf {A} :\mathbf {B} =A_{1}B_{1}+A_{2}B_{2}+A_{3}B_{3}+2A_{4}B_{4}+2A_{5}B_{5}+2A_{6}B_{6}}
berücksichtigt werden. Siehe auch #Voigt'sche Notation von Tensoren vierter Stufe .
Definition
A
:
A
=
−
A
⊤
{\displaystyle \mathbf {A} :\quad \mathbf {A} =-\mathbf {A} ^{\top }}
Kofaktor:
c
o
f
(
A
)
=
a
d
j
(
A
)
=
A
⋅
A
+
I
2
(
A
)
1
=
A
⋅
A
−
1
2
S
p
(
A
2
)
1
{\displaystyle \mathrm {cof} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )=\mathbf {A\cdot A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} =\mathbf {A\cdot A} -{\frac {1}{2}}\mathrm {Sp} (\mathbf {A} ^{2})\mathbf {1} }
#Invarianten :
S
p
(
A
)
=
0
{\displaystyle \mathrm {Sp} (\mathbf {A} )=0}
I
2
(
A
)
=
−
1
2
S
p
(
A
2
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} )=-{\frac {1}{2}}\mathrm {Sp} (\mathbf {A} ^{2})}
d
e
t
(
A
)
=
0
{\displaystyle \mathrm {det} (\mathbf {A} )=0}
∥
A
∥=
2
I
2
(
A
)
=
−
S
p
(
A
2
)
{\displaystyle \quad \parallel \mathbf {A} \parallel ={\sqrt {2\mathrm {I} _{2}(\mathbf {A} )}}={\sqrt {-\mathrm {Sp} (\mathbf {A} ^{2})}}}
In kartesischen Koordinaten:
A
=
A
i
j
e
^
i
⊗
e
^
j
=
(
0
A
12
A
13
−
A
12
0
A
23
−
A
13
−
A
23
0
)
{\displaystyle \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}={\begin{pmatrix}0&A_{12}&A_{13}\\-A_{12}&0&A_{23}\\-A_{13}&-A_{23}&0\end{pmatrix}}}
#Invarianten :
S
p
(
A
i
j
e
^
i
⊗
e
^
j
)
=
0
{\displaystyle \mathrm {Sp} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=0}
I
2
(
A
i
j
e
^
i
⊗
e
^
j
)
=
A
12
2
+
A
13
2
+
A
23
2
{\displaystyle \mathrm {I} _{2}(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{12}^{2}+A_{13}^{2}+A_{23}^{2}}
d
e
t
(
A
i
j
e
^
i
⊗
e
^
j
)
=
0
{\displaystyle \mathrm {det} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=0}
∥
A
i
j
e
^
i
⊗
e
^
j
∥=
2
A
12
2
+
A
13
2
+
A
23
2
{\displaystyle \parallel A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\parallel ={\sqrt {2}}{\sqrt {A_{12}^{2}+A_{13}^{2}+A_{23}^{2}}}}
Bilinearform:
u
→
⋅
A
⋅
v
→
=
−
v
→
⋅
A
⋅
u
→
∀
u
→
,
v
→
∈
V
{\displaystyle {\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}=-{\vec {v}}\cdot \mathbf {A} \cdot {\vec {u}}\quad \forall {\vec {u}},{\vec {v}}\in \mathbb {V} }
v
→
⋅
A
⋅
v
→
=
0
∀
v
→
∈
V
{\displaystyle {\vec {v}}\cdot \mathbf {A} \cdot {\vec {v}}=0\quad \forall {\vec {v}}\in \mathbb {V} }
Ein Eigenwert ist null, zwei imaginär konjugiert komplex, siehe #Axialer Tensor oder Kreuzproduktmatrix .
#Dualer axialer Vektor :
A
×
:=
A
→
A
:=
−
1
2
1
×
A
⊤
=
−
1
2
1
⋅
×
A
=
−
1
2
i
→
(
A
)
→
A
⋅
v
→
=
A
→
A
×
v
→
∀
v
→
∈
V
{\displaystyle {\begin{aligned}&\mathbf {A} _{\times }:={\stackrel {A}{\overrightarrow {\mathbf {A} }}}:=-{\frac {1}{2}}\mathbf {1} \times \mathbf {A} ^{\top }=-{\frac {1}{2}}\mathbf {1} \cdot \!\!\times \mathbf {A} =-{\frac {1}{2}}{\vec {\mathrm {i} }}(\mathbf {A} )\\&\rightarrow \quad \mathbf {A} \cdot {\vec {v}}={\stackrel {A}{\overrightarrow {\mathbf {A} }}}\times {\vec {v}}\quad \forall {\vec {v}}\in \mathbb {V} \end{aligned}}}
mit #Vektorinvariante
i
→
(
A
)
{\displaystyle {\vec {\mathrm {i} }}(\mathbf {A} )}
. Der zum Eigenwert null gehörende #Eigenvektor ist proportional zum dualen axialen Vektor
A
×
{\displaystyle \mathbf {A} _{\times }}
denn
A
⋅
A
×
=
A
×
×
A
×
=
0
→
{\displaystyle \mathbf {A\cdot A} _{\times }=\mathbf {A} _{\times }\times \mathbf {A} _{\times }={\vec {0}}}
A
=
A
i
j
e
^
i
⊗
e
^
j
→
A
×
=
−
1
2
A
i
j
e
^
i
×
e
^
j
=
(
−
A
23
A
13
−
A
12
)
{\displaystyle \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\quad \rightarrow \;\mathbf {A} _{\times }=-{\frac {1}{2}}A_{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\begin{pmatrix}-A_{23}\\A_{13}\\-A_{12}\end{pmatrix}}}
A
=
A
i
j
(
a
→
i
⊗
b
→
j
−
b
→
j
⊗
a
→
i
)
→
A
×
=
−
A
i
j
a
→
i
×
b
→
j
{\displaystyle \mathbf {A} =A_{ij}({\vec {a}}_{i}\otimes {\vec {b}}_{j}-{\vec {b}}_{j}\otimes {\vec {a}}_{i})\quad \rightarrow \;\mathbf {A} _{\times }=-A_{ij}{\vec {a}}_{i}\times {\vec {b}}_{j}}
Kreuzproduktmatrix
[
u
→
]
×
{\displaystyle [{\vec {u}}]_{\times }}
eines Vektors
u
→
{\displaystyle {\vec {u}}}
:
u
→
=
u
i
e
^
i
=
(
u
1
u
2
u
3
)
→
[
u
→
]
×
=
u
→
×
1
=
u
→
×
e
^
i
⊗
e
^
i
=
−
E
3
⋅
u
→
=
(
0
−
u
3
u
2
u
3
0
−
u
1
−
u
2
u
1
0
)
∈
L
{\displaystyle {\begin{aligned}{\vec {u}}=u_{i}{\hat {e}}_{i}=&{\begin{pmatrix}u_{1}\\u_{2}\\u_{3}\end{pmatrix}}\\\rightarrow \;[{\vec {u}}]_{\times }=&{\vec {u}}\times \mathbf {1} ={\vec {u}}\times {\hat {e}}_{i}\otimes {\hat {e}}_{i}=-{\stackrel {3}{\mathbf {E} }}\cdot {\vec {u}}={\begin{pmatrix}0&-u_{3}&u_{2}\\u_{3}&0&-u_{1}\\-u_{2}&u_{1}&0\end{pmatrix}}\in {\mathcal {L}}\end{aligned}}}
Kofaktor:
c
o
f
(
u
→
×
1
)
=
a
d
j
(
u
→
×
1
)
=
u
→
⊗
u
→
{\displaystyle \mathrm {cof} ({\vec {u}}\times \mathbf {1} )=\mathrm {adj} ({\vec {u}}\times \mathbf {1} )={\vec {u}}\otimes {\vec {u}}}
#Invarianten :
S
p
=
0
{\displaystyle \mathrm {Sp} =0}
I
2
=
u
→
⋅
u
→
=
u
1
2
+
u
2
2
+
u
3
2
{\displaystyle \mathrm {I} _{2}={\vec {u}}\cdot {\vec {u}}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
d
e
t
=
0
{\displaystyle \mathrm {det} =0}
‖
u
→
×
1
‖
=
2
u
→
⋅
u
→
=
2
u
1
2
+
u
2
2
+
u
3
2
{\displaystyle \|{\vec {u}}\times \mathbf {1} \|={\sqrt {2{\vec {u}}\cdot {\vec {u}}}}={\sqrt {2}}{\sqrt {u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}}}
u
→
×
1
→
A
=
u
→
{\displaystyle {\stackrel {A}{\overrightarrow {{\vec {u}}\times \mathbf {1} }}}={\vec {u}}}
#Eigensystem :
λ
1
=
0
,
v
→
1
=
u
→
λ
2
,
3
=
∓
i
|
u
→
|
,
v
→
2
,
3
≃
u
1
|
u
→
|
(
u
1
u
2
u
3
)
±
i
(
±
i
|
u
→
|
−
u
3
u
2
)
{\displaystyle {\begin{aligned}\lambda _{1}=&0\,,&{\vec {v}}_{1}=&{\vec {u}}\\\lambda _{2,3}=&\mp \mathrm {i} |{\vec {u}}|\,,&{\vec {v}}_{2,3}&\simeq &{\frac {u_{1}}{|{\vec {u}}|}}{\begin{pmatrix}u_{1}\\u_{2}\\u_{3}\end{pmatrix}}\pm \mathrm {i} {\begin{pmatrix}\pm \mathrm {i} |{\vec {u}}|\\-u_{3}\\u_{2}\end{pmatrix}}\end{aligned}}}
Eigenschaften:
u
→
×
v
→
=
(
u
→
×
1
)
⋅
v
→
=
u
→
⋅
(
v
→
×
1
)
{\displaystyle {\vec {u}}\times {\vec {v}}=({\vec {u}}\times \mathbf {1} )\cdot {\vec {v}}={\vec {u}}\cdot ({\vec {v}}\times \mathbf {1} )}
u
→
×
1
=
1
×
u
→
{\displaystyle {\vec {u}}\times \mathbf {1} =\mathbf {1} \times {\vec {u}}}
(
u
→
×
1
)
⊤
=
−
u
→
×
1
{\displaystyle ({\vec {u}}\times \mathbf {1} )^{\top }=-{\vec {u}}\times \mathbf {1} }
u
→
=
−
1
2
1
⋅
×
(
u
→
×
1
)
=
−
1
2
(
1
×
u
→
)
×
1
=
1
2
1
×
(
u
→
×
1
)
{\displaystyle {\vec {u}}=-{\frac {1}{2}}\mathbf {1} \cdot \!\!\times ({\vec {u}}\times \mathbf {1} )=-{\frac {1}{2}}(\mathbf {1} \times {\vec {u}})\times \mathbf {1} ={\frac {1}{2}}\mathbf {1} \times ({\vec {u}}\times \mathbf {1} )}
u
→
×
(
v
→
×
1
)
=
(
u
→
×
1
)
⋅
(
v
→
×
1
)
=
v
→
⊗
u
→
−
(
u
→
⋅
v
→
)
1
{\displaystyle {\vec {u}}\times ({\vec {v}}\times \mathbf {1} )=({\vec {u}}\times \mathbf {1} )\cdot ({\vec {v}}\times \mathbf {1} )={\vec {v}}\otimes {\vec {u}}-({\vec {u}}\cdot {\vec {v}})\mathbf {1} }
u
→
×
(
v
→
×
1
)
⋅
w
→
=
u
→
×
(
v
→
×
w
→
)
=
(
u
→
⋅
w
→
)
v
→
−
(
u
→
⋅
v
→
)
w
→
{\displaystyle {\vec {u}}\times ({\vec {v}}\times \mathbf {1} )\cdot {\vec {w}}={\vec {u}}\times ({\vec {v}}\times {\vec {w}})=({\vec {u}}\cdot {\vec {w}}){\vec {v}}-({\vec {u}}\cdot {\vec {v}}){\vec {w}}}
Potenzen von
[
u
→
]
×
=
u
→
×
1
{\displaystyle [{\vec {u}}]_{\times }={\vec {u}}\times \mathbf {1} }
[
u
→
]
×
2
=
[
u
→
]
×
⋅
[
u
→
]
×
=
u
→
⊗
u
→
−
(
u
→
⋅
u
→
)
1
{\displaystyle [{\vec {u}}]_{\times }^{2}=[{\vec {u}}]_{\times }\cdot [{\vec {u}}]_{\times }={\vec {u}}\otimes {\vec {u}}-({\vec {u}}\cdot {\vec {u}})\mathbf {1} }
[
u
→
]
×
3
=
−
(
u
→
⋅
u
→
)
[
u
→
]
×
{\displaystyle [{\vec {u}}]_{\times }^{3}=-({\vec {u}}\cdot {\vec {u}})[{\vec {u}}]_{\times }}
Definition
A
:
S
p
(
A
)
=
0
{\displaystyle \mathbf {A} :\quad \mathrm {Sp} (\mathbf {A} )=0}
Kofaktor:
c
o
f
(
A
)
=
(
A
2
)
⊤
+
I
2
(
A
)
1
=
(
A
2
)
⊤
−
1
2
S
p
(
A
2
)
1
{\displaystyle \mathrm {cof} (\mathbf {A} )=\left(\mathbf {A} ^{2}\right)^{\top }+\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} =\left(\mathbf {A} ^{2}\right)^{\top }-{\frac {1}{2}}\mathrm {Sp} (\mathbf {A} ^{2})\mathbf {1} }
#Hauptinvarianten :
S
p
(
A
)
:=
0
{\displaystyle \mathrm {Sp} (\mathbf {A} ):=0}
I
2
(
A
)
=
−
1
2
S
p
(
A
2
)
{\displaystyle \mathrm {I} _{2}(\mathbf {A} )=-{\frac {1}{2}}\mathrm {Sp} (\mathbf {A} ^{2})}
d
e
t
(
A
)
=
1
3
S
p
(
A
3
)
{\displaystyle \mathrm {det} (\mathbf {A} )={\frac {1}{3}}\mathrm {Sp} (\mathbf {A} ^{3})}
Bezüglich der Standardbasis:
A
=
A
i
j
e
^
i
⊗
e
^
j
=
(
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
−
A
11
−
A
22
)
{\displaystyle \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}={\begin{pmatrix}A_{11}&A_{12}&A_{13}\\A_{21}&A_{22}&A_{23}\\A_{31}&A_{32}&-A_{11}-A_{22}\end{pmatrix}}}
S
p
(
A
i
j
e
^
i
⊗
e
^
j
)
=
0
{\displaystyle \mathrm {Sp} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=0}
I
2
(
A
i
j
e
^
i
⊗
e
^
j
)
=
−
A
11
2
−
A
22
2
−
A
11
A
22
−
A
12
A
21
−
A
13
A
31
−
A
23
A
32
{\displaystyle \mathrm {I} _{2}(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=-A_{11}^{2}-A_{22}^{2}-A_{11}A_{22}-A_{12}A_{21}-A_{13}A_{31}-A_{23}A_{32}}
d
e
t
(
A
i
j
e
^
i
⊗
e
^
j
)
=
−
A
11
(
A
11
A
22
+
A
22
2
+
A
23
A
32
)
+
A
12
(
A
23
A
31
+
A
21
A
11
+
A
21
A
22
)
+
A
13
(
A
21
A
32
−
A
22
A
31
)
{\displaystyle {\begin{aligned}\mathrm {det} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})=&-A_{11}(A_{11}A_{22}+A_{22}^{2}+A_{23}A_{32})\\&+A_{12}(A_{23}A_{31}+A_{21}A_{11}+A_{21}A_{22})\\&+A_{13}(A_{21}A_{32}-A_{22}A_{31})\end{aligned}}}
∥
A
i
j
e
^
i
⊗
e
^
j
∥=
2
A
11
2
+
2
A
22
2
+
2
A
11
A
22
+
A
12
2
+
A
21
2
+
…
…
+
A
13
2
+
A
31
2
+
A
23
2
+
A
32
2
{\displaystyle \parallel A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\parallel ={\sqrt {\begin{array}{r}2A_{11}^{2}+2A_{22}^{2}+2A_{11}A_{22}+A_{12}^{2}+A_{21}^{2}+\ldots \\\ldots +A_{13}^{2}+A_{31}^{2}+A_{23}^{2}+A_{32}^{2}\end{array}}}}
Definition
A
:
A
=
a
1
=
(
a
0
0
0
a
0
0
0
a
)
{\displaystyle \mathbf {A} :\quad \mathbf {A} =a\mathbf {1} ={\begin{pmatrix}a&0&0\\0&a&0\\0&0&a\end{pmatrix}}}
Kofaktor:
c
o
f
(
A
)
=
a
d
j
(
A
)
=
a
2
1
{\displaystyle \mathrm {cof} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )=a^{2}\mathbf {1} }
S
p
(
A
)
=
3
a
{\displaystyle \mathrm {Sp} (\mathbf {A} )=3a}
I
2
(
A
)
=
3
a
2
{\displaystyle \mathrm {I} _{2}(\mathbf {A} )=3a^{2}}
d
e
t
(
A
)
=
a
3
{\displaystyle \mathrm {det} (\mathbf {A} )=a^{3}}
∥
A
∥=
3
|
a
|
{\displaystyle \parallel \mathbf {A} \parallel ={\sqrt {3}}|a|}
Gegeben sei die Gerade durch den Punkt
x
→
{\displaystyle {\vec {x}}}
mit Richtungsvektor
g
→
{\displaystyle {\vec {g}}}
und ein beliebiger anderer Punkt
p
→
{\displaystyle {\vec {p}}}
.
Dann ist
p
→
=
x
→
+
a
→
+
b
→
mit
a
→
‖
g
→
und
b
→
⊥
g
→
G
=
g
→
⊗
g
→
g
→
⋅
g
→
→
G
⋅
g
→
=
g
→
,
(
1
−
G
)
⋅
g
→
=
0
→
n
→
⋅
g
→
=
0
→
G
⋅
n
→
=
0
→
,
(
1
−
G
)
⋅
n
→
=
n
→
a
→
=
G
⋅
(
p
→
−
x
→
)
=
g
→
⋅
(
p
→
−
x
→
)
g
→
⋅
g
→
g
→
b
→
=
(
1
−
G
)
⋅
(
p
→
−
x
→
)
=
p
→
−
x
→
−
a
→
{\displaystyle {\begin{aligned}{\vec {p}}=&{\vec {x}}+{\vec {a}}+{\vec {b}}\quad {\textsf {mit}}\quad {\vec {a}}\|{\vec {g}}\quad {\text{und}}\quad {\vec {b}}\bot {\vec {g}}\\\mathbf {G} =&{\frac {{\vec {g}}\otimes {\vec {g}}}{{\vec {g}}\cdot {\vec {g}}}}\quad \rightarrow \quad \mathbf {G} \cdot {\vec {g}}={\vec {g}}\,,\quad (\mathbf {1} -\mathbf {G} )\cdot {\vec {g}}={\vec {0}}\\&{\vec {n}}\cdot {\vec {g}}=0\quad \rightarrow \quad \mathbf {G} \cdot {\vec {n}}={\vec {0}}\,,\quad (\mathbf {1} -\mathbf {G} )\cdot {\vec {n}}={\vec {n}}\\{\vec {a}}=&\mathbf {G} \cdot ({\vec {p}}-{\vec {x}})={\frac {{\vec {g}}\cdot ({\vec {p}}-{\vec {x}})}{{\vec {g}}\cdot {\vec {g}}}}{\vec {g}}\\{\vec {b}}=&\left(\mathbf {1} -\mathbf {G} \right)\cdot ({\vec {p}}-{\vec {x}})={\vec {p}}-{\vec {x}}-{\vec {a}}\end{aligned}}}
Der Punkt
x
→
+
a
→
{\displaystyle {\vec {x}}+{\vec {a}}}
ist die senkrechte Projektion von
p
→
{\displaystyle {\vec {p}}}
auf die Gerade. Der Tensor G extrahiert den Anteil eines Vektors in Richtung von
g
→
{\displaystyle {\vec {g}}}
und 1 -G den Anteil senkrecht dazu.
Gegeben sei die Ebene durch den Punkt
x
→
{\displaystyle {\vec {x}}}
und zwei die Ebene aufspannende Vektoren
u
→
{\displaystyle {\vec {u}}}
und
v
→
⧸
‖
u
→
{\displaystyle {\vec {v}}\not \!\|{\vec {u}}}
sowie ein beliebiger anderer Punkt
p
→
{\displaystyle {\vec {p}}}
. Dann verschwindet die Normale
n
^
=
u
→
×
v
→
|
u
→
×
v
→
|
{\displaystyle {\hat {n}}={\frac {{\vec {u}}\times {\vec {v}}}{|{\vec {u}}\times {\vec {v}}|}}}
nicht. Dann ist
p
→
=
x
→
+
a
→
+
b
→
mit
a
→
⊥
n
^
und
b
→
‖
n
^
P
=
(
v
→
⋅
v
→
)
u
→
⊗
u
→
−
(
u
→
⋅
v
→
)
(
u
→
⊗
v
→
+
v
→
⊗
u
→
)
+
(
u
→
⋅
u
→
)
v
→
⊗
v
→
(
u
→
⋅
u
→
)
(
v
→
⋅
v
→
)
−
(
u
→
⋅
v
→
)
2
=
1
−
n
^
⊗
n
^
→
P
⋅
u
→
=
u
→
,
P
⋅
v
→
=
v
→
,
P
⋅
n
^
=
0
→
,
(
1
−
P
)
⋅
n
^
=
n
^
→
P
⋅
(
x
u
→
+
y
v
→
)
=
x
u
→
+
y
v
→
und
(
1
−
P
)
⋅
(
x
u
→
+
y
v
→
)
=
0
→
∀
x
,
y
∈
R
a
→
=
P
⋅
(
p
→
−
x
→
)
b
→
=
(
1
−
P
)
⋅
(
p
→
−
x
→
)
=
p
→
−
x
→
−
a
→
{\displaystyle {\begin{aligned}{\vec {p}}=&{\vec {x}}+{\vec {a}}+{\vec {b}}\quad {\textsf {mit}}\quad {\vec {a}}\bot {\hat {n}}\quad {\text{und}}\quad {\vec {b}}\|{\hat {n}}\\\mathbf {P} =&{\frac {({\vec {v}}\cdot {\vec {v}}){\vec {u}}\otimes {\vec {u}}-({\vec {u}}\cdot {\vec {v}})({\vec {u}}\otimes {\vec {v}}+{\vec {v}}\otimes {\vec {u}})+({\vec {u}}\cdot {\vec {u}}){\vec {v}}\otimes {\vec {v}}}{({\vec {u}}\cdot {\vec {u}})({\vec {v}}\cdot {\vec {v}})-({\vec {u}}\cdot {\vec {v}})^{2}}}=\mathbf {1} -{\hat {n}}\otimes {\hat {n}}\\&\rightarrow \mathbf {P} \cdot {\vec {u}}={\vec {u}}\,,\quad \mathbf {P} \cdot {\vec {v}}={\vec {v}}\,,\quad \mathbf {P} \cdot {\hat {n}}={\vec {0}}\,,\quad (\mathbf {1} -\mathbf {P} )\cdot {\hat {n}}={\hat {n}}\\&\rightarrow \mathbf {P} \cdot (x{\vec {u}}+y{\vec {v}})=x{\vec {u}}+y{\vec {v}}\quad {\text{und}}\quad (\mathbf {1} -\mathbf {P} )\cdot (x{\vec {u}}+y{\vec {v}})={\vec {0}}\quad \forall x,y\in \mathbb {R} \\{\vec {a}}=&\mathbf {P} \cdot ({\vec {p}}-{\vec {x}})\\{\vec {b}}=&(\mathbf {1} -\mathbf {P} )\cdot ({\vec {p}}-{\vec {x}})={\vec {p}}-{\vec {x}}-{\vec {a}}\end{aligned}}}
Der Punkt
x
→
+
a
→
{\displaystyle {\vec {x}}+{\vec {a}}}
ist die senkrechte Projektion von
p
→
{\displaystyle {\vec {p}}}
auf die Ebene.[ 2] Der Tensor P extrahiert den Anteil eines Vektors in der Ebene und 1 -P den Anteil senkrecht dazu.
Die Projektion der Geraden, die durch die Punkte
x
→
{\displaystyle {\vec {x}}}
und
p
→
{\displaystyle {\vec {p}}}
verläuft, liegt in der Ebene in Richtung des Vektors
a
→
{\displaystyle {\vec {a}}}
.
Falls
|
u
→
|
=
|
v
→
|
=
1
{\displaystyle |{\vec {u}}|=|{\vec {v}}|=1}
und
u
→
⊥
v
→
{\displaystyle {\vec {u}}\bot {\vec {v}}}
folgt:
n
^
=
u
→
×
v
→
mit
|
n
^
|
=
1
{\displaystyle {\hat {n}}={\vec {u}}\times {\vec {v}}\quad {\text{mit}}\quad |{\hat {n}}|=1}
P
=
u
→
⊗
u
→
+
v
→
⊗
v
→
=
1
−
n
^
⊗
n
^
{\displaystyle \mathbf {P} ={\vec {u}}\otimes {\vec {u}}+{\vec {v}}\otimes {\vec {v}}=\mathbf {1} -{\hat {n}}\otimes {\hat {n}}}
a
→
=
(
u
→
⊗
u
→
+
v
→
⊗
v
→
)
⋅
(
p
→
−
x
→
)
=
(
1
−
n
^
⊗
n
^
)
⋅
(
p
→
−
x
→
)
{\displaystyle {\vec {a}}=({\vec {u}}\otimes {\vec {u}}+{\vec {v}}\otimes {\vec {v}})\cdot ({\vec {p}}-{\vec {x}})=(\mathbf {1} -{\hat {n}}\otimes {\hat {n}})\cdot ({\vec {p}}-{\vec {x}})}
b
→
=
(
1
−
u
→
⊗
u
→
−
v
→
⊗
v
→
)
⋅
(
p
→
−
x
→
)
=
(
n
^
⊗
n
^
)
⋅
(
p
→
−
x
→
)
{\displaystyle {\vec {b}}=(\mathbf {1} -{\vec {u}}\otimes {\vec {u}}-{\vec {v}}\otimes {\vec {v}})\cdot ({\vec {p}}-{\vec {x}})=({\hat {n}}\otimes {\hat {n}})\cdot ({\vec {p}}-{\vec {x}})}
Definition:
E
3
:=
ϵ
i
j
k
e
^
i
⊗
e
^
j
⊗
e
^
k
=
(
e
^
j
×
e
^
k
)
⊗
e
^
j
⊗
e
^
k
=
e
^
i
⊗
(
e
^
k
×
e
^
i
)
⊗
e
^
k
=
e
^
i
⊗
e
^
j
⊗
(
e
^
i
×
e
^
j
)
{\displaystyle {\begin{aligned}{\stackrel {3}{\mathbf {E} }}:=&\epsilon _{ijk}\,{\hat {e}}_{i}\otimes {\hat {e}}_{j}\otimes {\hat {e}}_{k}\\=&({\hat {e}}_{j}\times {\hat {e}}_{k})\otimes {\hat {e}}_{j}\otimes {\hat {e}}_{k}\\=&{\hat {e}}_{i}\otimes ({\hat {e}}_{k}\times {\hat {e}}_{i})\otimes {\hat {e}}_{k}\\=&{\hat {e}}_{i}\otimes {\hat {e}}_{j}\otimes ({\hat {e}}_{i}\times {\hat {e}}_{j})\end{aligned}}}
Kreuzprodukt von Vektoren:
u
→
×
v
→
=
E
3
:
(
u
→
⊗
v
→
)
=
v
→
⋅
E
3
⋅
u
→
=
−
u
→
⋅
E
3
⋅
v
→
=
−
E
3
:
(
v
→
⊗
u
→
)
=
−
v
→
×
u
→
{\displaystyle {\vec {u}}\times {\vec {v}}={\stackrel {3}{\mathbf {E} }}:({\vec {u}}\otimes {\vec {v}})={\vec {v}}\cdot {\stackrel {3}{\mathbf {E} }}\cdot {\vec {u}}=-{\vec {u}}\cdot {\stackrel {3}{\mathbf {E} }}\cdot {\vec {v}}=-{\stackrel {3}{\mathbf {E} }}:({\vec {v}}\otimes {\vec {u}})=-{\vec {v}}\times {\vec {u}}}
e
→
i
×
e
→
j
=
ϵ
i
j
k
e
^
k
{\displaystyle {\vec {e}}_{i}\times {\vec {e}}_{j}=\epsilon _{ijk}\,{\hat {e}}_{k}}
#Kreuzprodukt von Tensoren , #Skalarkreuzprodukt von Tensoren :
E
3
:
A
=
A
:
E
3
=
−
E
3
:
(
A
⊤
)
=
−
(
A
⊤
)
:
E
3
=
1
×
A
⊤
=
1
⋅
×
A
{\displaystyle {\begin{aligned}{\stackrel {3}{\mathbf {E} }}:\mathbf {A} =&\mathbf {A} :{\stackrel {3}{\mathbf {E} }}=-{\stackrel {3}{\mathbf {E} }}:(\mathbf {A} ^{\top })=-(\mathbf {A} ^{\top }):{\stackrel {3}{\mathbf {E} }}\\=&\mathbf {1} \times \mathbf {A} ^{\top }=\mathbf {1} \cdot \!\!\times \mathbf {A} \end{aligned}}}
#Dualer axialer Vektor und #Vektorinvariante :
E
3
:
A
=
−
2
A
→
A
=
i
→
(
A
)
{\displaystyle {\stackrel {3}{\mathbf {E} }}:\mathbf {A} =-2{\stackrel {A}{\overrightarrow {\mathbf {A} }}}={\vec {\mathrm {i} }}(\mathbf {A} )}
#Kreuzprodukt von Tensoren :
A
×
B
=
E
3
:
(
A
⋅
B
⊤
)
{\displaystyle \mathbf {A} \times \mathbf {B} ={\stackrel {3}{\mathbf {E} }}:(\mathbf {A\cdot B} ^{\top })}
(
A
i
k
e
→
i
⊗
e
→
k
)
×
(
B
j
l
e
→
j
⊗
e
→
l
)
=
A
i
k
B
j
k
e
→
i
×
e
→
j
=
ϵ
i
j
k
A
j
l
B
k
l
e
→
i
{\displaystyle (A_{ik}{\vec {e}}_{i}\otimes {\vec {e}}_{k})\times (B_{jl}{\vec {e}}_{j}\otimes {\vec {e}}_{l})=A_{ik}B_{jk}{\vec {e}}_{i}\times {\vec {e}}_{j}=\epsilon _{ijk}A_{jl}B_{kl}{\vec {e}}_{i}}
#Skalarkreuzprodukt von Tensoren :
A
⋅
×
B
=
E
3
:
(
A
⋅
B
)
{\displaystyle \mathbf {A} \cdot \!\!\times \mathbf {B} ={\stackrel {3}{\mathbf {E} }}:(\mathbf {A\cdot B} )}
(
A
i
k
e
→
i
⊗
e
→
k
)
⋅
×
(
B
l
j
e
→
l
⊗
e
→
j
)
=
A
i
k
B
k
j
e
→
i
×
e
→
j
=
ϵ
i
j
k
A
j
l
B
l
k
e
→
i
{\displaystyle (A_{ik}{\vec {e}}_{i}\otimes {\vec {e}}_{k})\cdot \!\!\times (B_{lj}{\vec {e}}_{l}\otimes {\vec {e}}_{j})=A_{ik}B_{kj}{\vec {e}}_{i}\times {\vec {e}}_{j}=\epsilon _{ijk}A_{jl}B_{lk}{\vec {e}}_{i}}
#Axialer Tensor oder Kreuzproduktmatrix :
E
3
⋅
u
→
=
u
→
⋅
E
3
=
−
u
→
×
1
=
−
1
×
u
→
{\displaystyle {\stackrel {3}{\mathbf {E} }}\cdot {\vec {u}}={\vec {u}}\cdot {\stackrel {3}{\mathbf {E} }}=-{\vec {u}}\times \mathbf {1} =-\mathbf {1} \times {\vec {u}}}
Tensoren zweiter Stufe sind ebenfalls Elemente eines Vektorraums
L
{\displaystyle {\mathcal {L}}}
wie im Abschnitt #Tensoren als Elemente eines Vektorraumes dargestellt. Daher kann man Tensoren vierter Stufe definieren, indem man in dem Kapitel formal die Tensoren zweiter Stufe durch Tensoren vierter Stufe und die Vektoren durch Tensoren zweiter Stufe ersetzt, z. B.:
A
4
=
A
p
q
(
A
p
⊗
G
q
)
{\displaystyle {\stackrel {4}{\mathbf {A} }}=A_{pq}(\mathbf {A} _{p}\otimes \mathbf {G} _{q})}
mit Komponenten
A
p
q
{\displaystyle A_{pq}}
und die Tensoren
A
1
,
A
2
,
…
,
A
9
∈
L
{\displaystyle \mathbf {A} _{1},\mathbf {A} _{2},\ldots ,\mathbf {A} _{9}\in {\mathcal {L}}}
sowie
G
1
,
G
2
,
…
,
G
9
∈
L
{\displaystyle \mathbf {G} _{1},\mathbf {G} _{2},\ldots ,\mathbf {G} _{9}\in {\mathcal {L}}}
bilden eine Basis von
L
{\displaystyle {\mathcal {L}}}
.
Standardbasis in
L
{\displaystyle {\mathcal {L}}}
:
E
1
=
e
→
1
⊗
e
→
1
,
E
2
=
e
→
1
⊗
e
→
2
,
E
3
=
e
→
1
⊗
e
→
3
,
E
4
=
e
→
2
⊗
e
→
1
,
…
,
E
9
=
e
→
3
⊗
e
→
3
{\displaystyle \mathbf {E} _{1}={\vec {e}}_{1}\otimes {\vec {e}}_{1},\mathbf {E} _{2}={\vec {e}}_{1}\otimes {\vec {e}}_{2},\mathbf {E} _{3}={\vec {e}}_{1}\otimes {\vec {e}}_{3},\mathbf {E} _{4}={\vec {e}}_{2}\otimes {\vec {e}}_{1},\ldots ,\mathbf {E} _{9}={\vec {e}}_{3}\otimes {\vec {e}}_{3}}
Tensortransformation:
A
4
:
H
=
A
p
q
(
A
p
⊗
G
q
)
:
H
:=
A
p
q
(
G
q
:
H
)
A
p
{\displaystyle {\stackrel {4}{\mathbf {A} }}:\mathbf {H} =A_{pq}(\mathbf {A} _{p}\otimes \mathbf {G} _{q}):\mathbf {H} :=A_{pq}(\mathbf {G} _{q}:\mathbf {H} )\mathbf {A} _{p}}
Tensorprodukt:
[
A
p
q
(
A
p
⊗
G
q
)
]
:
[
B
r
s
(
H
r
⊗
U
s
)
]
:=
A
p
q
(
G
q
:
H
r
)
B
r
s
A
p
⊗
U
s
{\displaystyle [A_{pq}(\mathbf {A} _{p}\otimes \mathbf {G} _{q})]:[B_{rs}(\mathbf {H} _{r}\otimes \mathbf {U} _{s})]:=A_{pq}(\mathbf {G} _{q}:\mathbf {H} _{r})B_{rs}\mathbf {A} _{p}\otimes \mathbf {U} _{s}}
Übliche Schreibweisen für Tensoren vierter Stufe:
A
4
=
A
=
A
i
j
k
l
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
{\displaystyle {\stackrel {4}{\mathbf {A} }}=\mathbb {A} =A_{ijkl}\;{\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l}}
Transposition:
(
A
⊗
B
)
⊤
=
B
⊗
A
{\displaystyle (\mathbf {A} \otimes \mathbf {B} )^{\top }=\mathbf {B} \otimes \mathbf {A} }
(
A
i
j
k
l
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
⊤
:=
A
i
j
k
l
e
→
k
⊗
e
→
l
⊗
e
→
i
⊗
e
→
j
{\displaystyle (A_{ijkl}\;{\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})^{\top }:=A_{ijkl}\;{\vec {e}}_{k}\otimes {\vec {e}}_{l}\otimes {\vec {e}}_{i}\otimes {\vec {e}}_{j}}
Spezielle Transposition
A
4
⊤
m
n
{\displaystyle {\stackrel {4}{\mathbf {A} }}{}^{\stackrel {mn}{\top }}}
vertauscht
m
{\displaystyle m}
-tes mit
n
{\displaystyle n}
-tem Basissystem.
Beispielsweise:
A
4
⊤
13
:=
A
i
j
k
l
e
→
k
⊗
e
→
j
⊗
e
→
i
⊗
e
→
l
{\displaystyle {\stackrel {4}{\mathbf {A} }}{}^{\stackrel {13}{\top }}:=A_{ijkl}\;{\vec {e}}_{k}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{i}\otimes {\vec {e}}_{l}}
A
4
⊤
24
:=
A
i
j
k
l
e
→
i
⊗
e
→
l
⊗
e
→
k
⊗
e
→
j
{\displaystyle {\stackrel {4}{\mathbf {A} }}{}^{\stackrel {24}{\top }}:=A_{ijkl}\;{\vec {e}}_{i}\otimes {\vec {e}}_{l}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{j}}
A
4
⊤
=
(
A
4
⊤
13
)
⊤
24
=
A
i
j
k
l
e
→
k
⊗
e
→
l
⊗
e
→
i
⊗
e
→
j
{\displaystyle {\stackrel {4}{\mathbf {A} }}\,^{\top }=\left({\stackrel {4}{\mathbf {A} }}{}^{\stackrel {13}{\top }}\right){}^{\stackrel {24}{\top }}=A_{ijkl}\;{\vec {e}}_{k}\otimes {\vec {e}}_{l}\otimes {\vec {e}}_{i}\otimes {\vec {e}}_{j}}
Definition:
A
4
=
A
4
⊤
{\displaystyle {\stackrel {4}{\mathbf {A} }}={\stackrel {4}{\mathbf {A} }}{}^{\top }}
Dann gilt:
A
4
:
B
=
B
:
A
4
{\displaystyle {\stackrel {4}{\mathbf {A} }}:\mathbf {B} =\mathbf {B} :{\stackrel {4}{\mathbf {A} }}}
1
4
:=
E
p
⊗
E
p
=
1
4
⊤
=
(
1
⊗
1
)
⊤
23
=
e
→
i
⊗
e
→
j
⊗
e
→
i
⊗
e
→
j
=
δ
i
k
δ
j
l
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
{\displaystyle {\begin{aligned}{\stackrel {4}{\mathbf {1} }}:=&\mathbf {E} _{p}\otimes \mathbf {E} _{p}={\stackrel {4}{\mathbf {1} }}{}^{\top }=(\mathbf {1} \otimes \mathbf {1} )\,^{\stackrel {23}{\top }}\\=&{\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{i}\otimes {\vec {e}}_{j}=\delta _{ik}\delta _{jl}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\end{aligned}}}
Für beliebige Tensoren zweiter Stufe A gilt:
C
4
=
E
p
⊤
⊗
E
p
=
δ
i
l
δ
j
k
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
A
=
A
⊤
{\displaystyle {\stackrel {4}{\mathbf {C} }}=\mathbf {E} _{p}^{\top }\otimes \mathbf {E} _{p}=\delta _{il}\delta _{jk}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {A} =\mathbf {A} ^{\top }}
C
4
=
1
3
1
⊗
1
=
1
3
δ
i
j
δ
k
l
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
A
=
A
K
{\displaystyle {\stackrel {4}{\mathbf {C} }}={\frac {1}{3}}\mathbf {1} \otimes \mathbf {1} ={\frac {1}{3}}\delta _{ij}\delta _{kl}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {A} =\mathbf {A} ^{\mathrm {K} }}
C
4
=
1
4
−
1
3
1
⊗
1
=
(
δ
i
k
δ
j
l
−
1
3
δ
i
j
δ
k
l
)
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
A
=
A
D
{\displaystyle {\stackrel {4}{\mathbf {C} }}={\stackrel {4}{\mathbf {1} }}-{\frac {1}{3}}\mathbf {1} \otimes \mathbf {1} =(\delta _{ik}\delta _{jl}-{\frac {1}{3}}\delta _{ij}\delta _{kl})({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {A} =\mathbf {A} ^{\mathrm {D} }}
C
4
=
1
2
(
1
4
+
E
p
⊤
⊗
E
p
)
=
1
2
(
δ
i
k
δ
j
l
+
δ
i
l
δ
j
k
)
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
A
=
A
S
{\displaystyle {\stackrel {4}{\mathbf {C} }}={\frac {1}{2}}\left({\stackrel {4}{\mathbf {1} }}+\mathbf {E} _{p}^{\top }\otimes \mathbf {E} _{p}\right)={\frac {1}{2}}(\delta _{ik}\delta _{jl}+\delta _{il}\delta _{jk})({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {A} =\mathbf {A} ^{\mathrm {S} }}
C
4
=
1
2
(
1
4
−
E
p
⊤
⊗
E
p
)
=
1
2
(
δ
i
k
δ
j
l
−
δ
i
l
δ
j
k
)
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
A
=
A
A
{\displaystyle {\stackrel {4}{\mathbf {C} }}={\frac {1}{2}}\left({\stackrel {4}{\mathbf {1} }}-\mathbf {E} _{p}^{\top }\otimes \mathbf {E} _{p}\right)={\frac {1}{2}}(\delta _{ik}\delta _{jl}-\delta _{il}\delta _{jk})({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {A} =\mathbf {A} ^{\mathrm {A} }}
Diese fünf Tensoren sind sämtlich symmetrisch.
Mit beliebigen Tensoren zweiter Stufe A, B und G gilt:
C
4
=
(
A
⊗
B
⊤
)
⊤
23
=
A
i
k
B
l
j
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⋅
G
⋅
B
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} \otimes \mathbf {B} ^{\top })^{\stackrel {23}{\top }}=A_{ik}B_{lj}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A\cdot G\cdot B} }
C
4
=
(
A
⊤
⊗
B
⊤
)
⊤
23
=
A
k
i
B
l
j
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⊤
⋅
G
⋅
B
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} ^{\top }\otimes \mathbf {B} ^{\top })^{\stackrel {23}{\top }}=A_{ki}B_{lj}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A} ^{\top }\cdot \mathbf {G\cdot B} }
C
4
=
(
A
⊗
B
)
⊤
23
=
A
i
k
B
j
l
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⋅
G
⋅
B
⊤
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} \otimes \mathbf {B} )^{\stackrel {23}{\top }}=A_{ik}B_{jl}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A\cdot G\cdot B} ^{\top }}
C
4
=
(
A
⊤
⊗
B
)
⊤
23
=
A
k
i
B
j
l
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⊤
⋅
G
⋅
B
⊤
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} ^{\top }\otimes \mathbf {B} )^{\stackrel {23}{\top }}=A_{ki}B_{jl}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A} ^{\top }\cdot \mathbf {G\cdot B} ^{\top }}
In dem in diesen Formeln im Tensor vierter Stufe B durch B ⊤ und die Transpositionen
⊤
23
{\displaystyle {\stackrel {23}{\top }}}
durch
⊤
24
{\displaystyle {\stackrel {24}{\top }}}
ersetzt werden, entstehen die Ergebnisse mit transponiertem G :
C
4
=
(
A
⊗
B
)
⊤
24
=
A
i
l
B
k
j
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⋅
G
⊤
⋅
B
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} \otimes \mathbf {B} )^{\stackrel {24}{\top }}=A_{il}B_{kj}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A\cdot G} ^{\top }\cdot \mathbf {B} }
C
4
=
(
A
⊤
⊗
B
)
⊤
24
=
A
l
i
B
k
j
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⊤
⋅
G
⊤
⋅
B
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} ^{\top }\otimes \mathbf {B} )^{\stackrel {24}{\top }}=A_{li}B_{kj}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A} ^{\top }\cdot \mathbf {G} ^{\top }\cdot \mathbf {B} }
C
4
=
(
A
⊗
B
⊤
)
⊤
24
=
A
i
l
B
j
k
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⋅
G
⊤
⋅
B
⊤
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} \otimes \mathbf {B} ^{\top })^{\stackrel {24}{\top }}=A_{il}B_{jk}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A\cdot G} ^{\top }\cdot \mathbf {B} ^{\top }}
C
4
=
(
A
⊤
⊗
B
⊤
)
⊤
24
=
A
l
i
B
j
k
(
e
→
i
⊗
e
→
j
⊗
e
→
k
⊗
e
→
l
)
→
C
4
:
G
=
A
⊤
⋅
G
⊤
⋅
B
⊤
{\displaystyle {\stackrel {4}{\mathbf {C} }}=(\mathbf {A} ^{\top }\otimes \mathbf {B} ^{\top })^{\stackrel {24}{\top }}=A_{li}B_{jk}({\vec {e}}_{i}\otimes {\vec {e}}_{j}\otimes {\vec {e}}_{k}\otimes {\vec {e}}_{l})\rightarrow {\stackrel {4}{\mathbf {C} }}:\mathbf {G} =\mathbf {A} ^{\top }\cdot \mathbf {G} ^{\top }\cdot \mathbf {B} ^{\top }}
(
a
1
4
+
B
⊗
C
)
−
1
=
1
a
(
1
4
−
1
a
+
B
:
C
B
⊗
C
)
{\displaystyle \left(a{\stackrel {4}{\mathbf {1} }}+\mathbf {B} \otimes \mathbf {C} \right)^{-1}={\frac {1}{a}}\left({\stackrel {4}{\mathbf {1} }}-{\frac {1}{a+\mathbf {B} :\mathbf {C} }}\mathbf {B} \otimes \mathbf {C} \right)}
Mit den Spannungen
T
{\displaystyle \mathbf {T} }
und den Dehnungen
E
{\displaystyle \mathbf {E} }
im Hooke'schen Gesetz gilt:
C
4
:=
2
μ
1
4
+
λ
1
⊗
1
→
C
4
:
E
=
T
{\displaystyle {\stackrel {4}{\mathbf {C} }}:=2\mu {\stackrel {4}{\mathbf {1} }}+\lambda \mathbf {1} \otimes \mathbf {1} \quad \rightarrow \quad {\stackrel {4}{\mathbf {C} }}:\mathbf {E} =\mathbf {T} }
mit den Lamé-Konstanten
λ
{\displaystyle \lambda }
und
μ
{\displaystyle \mu }
. Dieser Elastizitätstensor ist symmetrisch.
Invertierungsformel mit
a
=
2
μ
{\displaystyle a=2\mu }
,
B
=
λ
1
{\displaystyle \mathbf {B} =\lambda \mathbf {1} }
und
C
=
1
{\displaystyle \mathbf {C} =\mathbf {1} }
:
S
4
:=
C
4
−
1
=
1
2
μ
(
1
4
−
λ
2
μ
+
3
λ
1
⊗
1
)
=
1
2
μ
1
4
−
ν
E
1
⊗
1
→
S
4
:
T
=
E
{\displaystyle {\begin{aligned}&{\stackrel {4}{\mathbf {S} }}:={\stackrel {4}{\mathbf {C} }}{}^{-1}={\frac {1}{2\mu }}\left({\stackrel {4}{\mathbf {1} }}-{\frac {\lambda }{2\mu +3\lambda }}\mathbf {1} \otimes \mathbf {1} \right)={\frac {1}{2\mu }}{\stackrel {4}{\mathbf {1} }}-{\frac {\nu }{E}}\mathbf {1} \otimes \mathbf {1} \\&\rightarrow \quad {\stackrel {4}{\mathbf {S} }}:\mathbf {T} =\mathbf {E} \end{aligned}}}
mit der Querdehnzahl
ν
{\displaystyle \nu }
und dem Elastizitätsmodul
E
{\displaystyle E}
.
Voigt'sche Notation von Tensoren vierter Stufe
Bearbeiten
Aus der Basis
S
1
,
…
,
S
6
{\displaystyle \mathbf {S} _{1},\ldots ,\mathbf {S} _{6}}
des Vektorraums
S
=
s
y
m
(
V
,
V
)
{\displaystyle {\mathcal {S}}=\mathrm {sym} (\mathbb {V} ,\mathbb {V} )}
der symmetrischen Tensoren zweiter Stufe, siehe #Voigt-Notation symmetrischer Tensoren zweiter Stufe , kann eine Basis des Vektorraums
S
4
=
L
i
n
(
S
,
S
)
{\displaystyle {\stackrel {4}{\mathcal {S}}}=\mathrm {Lin} ({\mathcal {S}},{\mathcal {S}})}
der linearen Abbildungen von symmetrischen Tensoren auf symmetrische Tensoren konstruiert werden. Die 36 Komponenten der Tensoren vierter Stufe aus
S
4
{\displaystyle {\stackrel {4}{\mathcal {S}}}}
können als Voigt'scher Notation in eine 6×6-Matrix einsortiert werden:
A
4
=
A
u
v
S
u
⊗
S
v
=
^
[
A
11
A
12
A
13
A
14
A
15
A
16
A
21
A
22
A
23
A
24
A
25
A
26
A
31
A
32
A
33
A
34
A
35
A
36
A
41
A
42
A
43
A
44
A
45
A
46
A
51
A
52
A
53
A
54
A
55
A
56
A
61
A
62
A
63
A
64
A
65
A
66
]
{\displaystyle {\stackrel {4}{\mathbf {A} }}=A_{uv}\mathbf {S} _{u}\otimes \mathbf {S} _{v}{\hat {=}}{\begin{bmatrix}A_{11}&A_{12}&A_{13}&A_{14}&A_{15}&A_{16}\\A_{21}&A_{22}&A_{23}&A_{24}&A_{25}&A_{26}\\A_{31}&A_{32}&A_{33}&A_{34}&A_{35}&A_{36}\\A_{41}&A_{42}&A_{43}&A_{44}&A_{45}&A_{46}\\A_{51}&A_{52}&A_{53}&A_{54}&A_{55}&A_{56}\\A_{61}&A_{62}&A_{63}&A_{64}&A_{65}&A_{66}\end{bmatrix}}}
Die Vektoren und Matrizen in Voigt'scher Notation können addiert, subtrahiert und mit einem Skalar multipliziert werden. Beim Matrizenprodukt in Voigt'scher Notation muss eine Diagonalmatrix
I
=
d
i
a
g
(
1
,
1
,
1
,
2
,
2
,
2
)
{\displaystyle I=\mathrm {diag} (1,1,1,2,2,2)}
mit den Einträgen
I
u
v
=
S
u
:
S
v
{\displaystyle I_{uv}=\mathbf {S} _{u}:\mathbf {S} _{v}}
zwischengeschaltet werden:
A
:
B
=
[
A
]
⊤
I
[
B
]
=
A
1
B
1
+
A
2
B
2
+
A
3
B
3
+
2
A
4
B
4
+
2
A
5
B
5
+
2
A
6
B
6
{\displaystyle \mathbf {A} :\mathbf {B} =[\mathbf {A} ]^{\top }I[\mathbf {B} ]=A_{1}B_{1}+A_{2}B_{2}+A_{3}B_{3}+2A_{4}B_{4}+2A_{5}B_{5}+2A_{6}B_{6}}
[
A
4
:
T
]
=
[
A
4
]
I
[
T
]
{\displaystyle \left[{\stackrel {4}{\mathbf {A} }}:\mathbf {T} \right]=\left[{\stackrel {4}{\mathbf {A} }}\right]I[\mathbf {T} ]}
[
A
4
:
B
4
]
=
[
A
4
]
I
[
B
4
]
{\displaystyle \left[{\stackrel {4}{\mathbf {A} }}:{\stackrel {4}{\mathbf {B} }}\right]=\left[{\stackrel {4}{\mathbf {A} }}\right]I\left[{\stackrel {4}{\mathbf {B} }}\right]}
Darin steht [x] für die Voigt-Notation von x.
Holm Altenbach: Kontinuumsmechanik. Einführung in die materialunabhängigen und materialabhängigen Gleichungen . 2. Auflage. Springer Vieweg, Berlin u. a. 2012, ISBN 978-3-642-24118-5 .
Philippe Ciarlet : Mathematical Elasticity . Band 1 : Three-Dimensional Elasticity. North-Holland, Amsterdam 1988, ISBN 0-444-70259-8 .
Wolfgang Ehlers: Ergänzung zu den Vorlesungen Technische Mechanik und Höhere Mechanik . Vektor- und Tensorrechnung, Eine Einführung. 2015 (uni-stuttgart.de [PDF; abgerufen am 3. September 2020]).
Ralf Greve: Kontinuumsmechanik. Ein Grundkurs für Ingenieure und Physiker . Springer, Berlin u. a. 2003, ISBN 3-540-00760-1 .