skip to main content
article

Prediction of the disulphide bridges in proteins using SVM

Published: 01 May 2007 Publication History

Abstract

Disulphide bonds link distant portions of protein chains and provide strong structural constraints in the form of long-range interactions. Prediction and knowledge of disulphide bond connectivity is important in reducing the search space of protein conformation. In this research, we present an effective way to predict disulphide bridges by Support Vector Machine (SVM). The SVM encoding was based on experimental results on the binding motifs of protein disulphide isomerases. The physical-chemical characteristics of the flanking sequences and the linear distance between the concerned cysteine pairs were also included in the encoding. An overall pair wise accuracy of 92% was obtained for the SP39 dataset.

References

[1]
Altschul, S.F., Warren, G., Webb, M., Eugene, W.M. and David, J.L. (1990) 'Basic local alignment search tool', J. Mol. Biol., Vol. 215, pp. 403-410.
[2]
Bairoch, A. and Apweiler, R. (2000) 'The SWISS-PROT protein sequence database and its supplemental TrEMBL', Nucleic Acids Res., Vol. 28, No. 1, pp. 45-48.
[3]
Baldi, P., Cheng, J. and Vullo, A. (2004) 'Large scale prediction of disulphide bond connectivity', Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, Vol. 17, pp. 97-104.
[4]
Bardwell, J. (2004) 'The dance of disulfide formation', Nat. Struct. Mol. Biol., Vol. 11, No. 7, pp. 582, 583.
[5]
Berg, J.M., Stryer, L., Tymoczko, J.L. (2002) in Tymoczko, J.L., Stryer, L. and Clarke, N. (Eds.): Chapter 8: Enzyme Basic Concepts and Kinetics, Biochemistry, 5th ed., W.H. Freeman and Company, England.
[6]
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) 'The protein data bank', Nucleic Acids Research, Vol. 28, pp. 235-242.
[7]
Bisswanger, H. (2004) Practical Enzymology, Wiley-VCH, Germany.
[8]
Bommarius, A.S. and Riebel, B.R. (2004) Biocatalysis, Wiley-VCH, Weihneim, Germany, p. 20.
[9]
Chen, B-J., Tsai, C-H., Chan, C-H. and Kao, C-Y. (2006) 'Disulfide connectivity prediction with 70% accuracy using two level models', Proteins: Structure, Function and Bioinformatics, Vol. 64, No. 1, pp. 246-252.
[10]
Cheng, J., Saigo, H. and Baldi, P. (2006) 'Large-scale prediction of disulphide bridges using kernel methods, two dimensional recursive neural networks and weighted graph matching', Proteins: Structure, Function and Bioinformatics, Vol. 62, No. 3, pp. 617-629.
[11]
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D. (2003) 'Multiple sequence alignment with the Clustal series of programs', Nucleic Acids Res., Vol. 31, pp. 3497-3500.
[12]
Cooper, G.M. (2000) The Cell: A Molecular Approach, 2nd ed., Sinauer Associates, Inc., Washington DC.
[13]
Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines, Cambridge University Press, Cambridge.
[14]
Darby, N.J., Penka, E. and Vincentelli, R. (1998) 'The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency', Journal of Molecular Biology, Vol. 276, No. 1, pp. 239-247.
[15]
Fariselli, P. and Casadio, R. (2001) 'Prediction of disulfide connectivity in proteins', Bioinformatics, Vol. 17, No. 10, pp. 957-964.
[16]
Fariselli, P., Riccobelli, P. and Casadio, R. (2002) 'A neural network based method for predicting the disulfide connectivity in proteins', in Damiani, E. et al. (Eds.): Knowledge Based Intelligent Information Engineering Systems and Allied Technologies (KES 2002), IOS Press, Amsterdam, pp. 464-468.
[17]
Ferre, F. and Clote, P. (2005) 'Disulfide connectivity prediction using secondary structure information and diresidue frequencies', Bioinformatics, Vol. 21, No. 10, pp. 2336-2346.
[18]
Fischer, E. (1894) 'Einfluss der configuration auf die wirkung derenzyme', Ber. Dt. Chem. Ges., Vol. 27, pp. 2985-2993.
[19]
Hinck, A.P., Truckses, D.m. and Markley, J.L. (1996) 'Engineered disulfide bonds in staphylococcal nuclease: effect on the stability and conformation of the folded protein', Biochemistry, Vol. 35, No. 32, pp. 10328-10338.
[20]
Horton, H.R., Moran, L.A., Ochs, R.S., Ravn, J.D. and Scrimgeour, K.G. (1996) Principles of Biochemistry, 2nd ed., Prentice-Hall, Inc, Upper Saddle River, NJ, p. 102.
[21]
Joachims, T. (1999) 'Making large-scale SVM learning practical', in Schölkopf, B., Burges, C. and Smola, A. (Eds.): Advances in Kernel Methods - Support Vector Learning, MIT-Press, Cambridge MA.
[22]
Meiler, J., Muller, M., Zeidler, A. and Schmaschke, F. (2001) 'Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks', J. Mol. Model, Vol. 7, No. 9, pp. 360-369.
[23]
Pirneskoski, A., Klappa, P., Lobell, M., Williamson, R.A., Byrne, L. and Alanen, H. (2004) 'Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase', J. Biol. Chem., Vol. 279, No. 11, pp. 10374-10381.
[24]
Ruddock, L.W., Freedman, R.B. and Klappa, P. (2000) 'Specificity in the substrate binding by protein folding catalysts: Tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp', Protein Science, Vol. 9, No. 4, pp. 758-764.
[25]
Shimalka, M., Lu, C., Salas, A., Xiao, T., Takagi, J. and Springer, T.A. (2002) 'Stabilizing the integrin alpha M inserted domain in alternative conformations with a range of engineered disulfide bonds', Proc. Natl. Aca. Sci. USA, Vol. 99, No. 26, pp. 16737-16741.
[26]
Stenesh, J. (1998) 'Chapter 3: proteins', Biochemistry, Springer, New York, p. 54.
[27]
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) 'The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools', Nucleic Acids Research, Vol. 25, pp. 4876-4882.
[28]
Tsai, C.H., Chen, B.J., Chan, C.H., Liu, H.L. and Kao, C.Y. (2005) 'Improving disulfide connectivity prediction with sequential distance between oxidized cysteines', Bioinformatics, Vol. 21, No. 24, pp. 4416-4419.
[29]
Vapnik, V. and Cortes, C. (1995) 'Support vector networks', Machine Learning, Vol. 20, No. 3, pp. 273-293.
[30]
Vullo, A. and Frasconi, P. (2004) 'Disulfide connectivity prediction using recursive neural networks and evolutionary information', Bioinformatics, Vol. 20, No. 5, pp. 653-659.

Recommendations

Comments

Information & Contributors

Information

Published In

International Journal of Bioinformatics Research and Applications  Volume 3, Issue 2
May 2007
138 pages
ISSN:1744-5485
EISSN:1744-5493
Issue’s Table of Contents

Publisher

Inderscience Publishers

Geneva 15, Switzerland

Publication History

Published: 01 May 2007

Author Tags

  1. SVM
  2. bioinformatics
  3. bond connectivity
  4. cysteines
  5. disulphide bonds
  6. disulphide bridges
  7. protein disulphide isomerases
  8. proteins
  9. support vector machines

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media