| 18.14.1 | |||
| , , , | |||
| 18.14.2 | |||
| , , . | |||
| 18.14.3 | |||
| , , . | |||
| 18.14.4 | |||
| , . | |||
| 18.14.5 | |||
| , , | |||
| 18.14.6 | |||
| , . | |||
| 18.14.7 | |||
| , . | |||
| 18.14.8 | |||
| , . | |||
| 18.14.9 | |||
| . | |||
For further inequalities see Abramowitz and Stegun (1964, §22.14).
| 18.14.10 | |||
| . | |||
Let . Then
| 18.14.11 | |||
| , . | |||
| 18.14.12 | |||
| , . | |||
| 18.14.13 | |||
| . | |||
Let the maxima , , of in be arranged so that
| 18.14.14 | |||
When choose so that
| 18.14.15 | |||
Then
| 18.14.16 | ||||
| 18.14.17 | ||||
| . | ||||
Also,
| 18.14.18 | |||
| , , | |||
| 18.14.19 | |||
| , , | |||
except that when (Chebyshev case) is constant.
Let the maxima , , of in be arranged so that
| 18.14.21 | |||
When choose so that
| 18.14.22 | |||
Then
| 18.14.23 | ||||
Also, when
| 18.14.24 | |||
The successive maxima of form a decreasing sequence for , and an increasing sequence for .
| 18.14.27 | |||
| , , . | |||