| 19.6.1 | ||||
|
ⓘ
| ||||
| 19.6.2 | ||||
| , | ||||
| . | ||||
|
ⓘ
| ||||
| 19.6.3 | |||
| . | |||
|
ⓘ
| |||
| 19.6.4 | ||||
| , | ||||
| . | ||||
|
ⓘ
| ||||
If , then the Cauchy principal value satisfies
| 19.6.5 | |||
|
ⓘ
| |||
and
| 19.6.6 | ||||
| , | ||||
| . | ||||
|
ⓘ
| ||||
| 19.6.7 | ||||
|
ⓘ
| ||||
| 19.6.8 | |||
|
ⓘ
| |||
For the inverse Gudermannian function see §4.23(viii). Compare also (19.10.2).
| 19.6.9 | ||||
|
ⓘ
| ||||
| 19.6.10 | |||
|
ⓘ
| |||
Circular and hyperbolic cases, including Cauchy principal values, are unified by using . Let and . Then
| 19.6.11 | ||||
|
ⓘ
| ||||
| 19.6.12 | ||||
|
ⓘ
| ||||
| 19.6.13 | ||||
|
ⓘ
| ||||
| 19.6.14 | ||||
|
ⓘ
| ||||
For the Cauchy principal value of when , see §19.7(iii).
| 19.6.15 | ||||
| or , , | ||||
| , | ||||
| . | ||||
|
ⓘ
| ||||