For , and with the common modulus suppressed:
| 22.8.1 | ||||
| 22.8.2 | ||||
| 22.8.3 | ||||
| 22.8.4 | |||
| 22.8.5 | ||||
| 22.8.6 | ||||
| 22.8.7 | ||||
| 22.8.8 | ||||
| 22.8.9 | ||||
| 22.8.10 | ||||
| 22.8.11 | ||||
| 22.8.12 | ||||
See also Carlson (2004).
For , and with the common modulus suppressed:
| 22.8.13 | ||||
| 22.8.14 | ||||
| 22.8.15 | ||||
| 22.8.16 | ||||
| 22.8.17 | ||||
| 22.8.18 | ||||
See also Carlson (2004).
In the following equations the common modulus is again suppressed.
Let
| 22.8.19 | |||
Then
| 22.8.20 | |||
and
| 22.8.21 | |||
A geometric interpretation of (22.8.20) analogous to that of (23.10.5) is given in Whittaker and Watson (1927, p. 530).
If sums/differences of the ’s are rational multiples of , then further relations follow. For instance, if
| 22.8.24 | |||
then
| 22.8.25 | |||