About the Project
3 Numerical MethodsAreas3.1 Arithmetics and Error Measures
Figure 3.1.1 (See in context.)
\begin{picture}(152.0,38.0)(-1.0,-1.0)\put(0.0,31.0){\makebox(2.0,6.0)[]{%
\small 1}}\put(0.0,26.0){\framebox(2.0,6.0)[]{$s$}}\put(3.0,31.0){\makebox(8.0%
,6.0)[]{\small 8}}\put(3.0,26.0){\framebox(8.0,6.0)[]{$E$}}\put(12.0,31.0){%
\makebox(23.0,6.0)[]{\small 23 bits}}\put(12.0,26.0){\framebox(23.0,6.0)[]{$f$%
}}\put(133.0,31.0){$N=32$,}\put(135.0,27.0){$p=24$}\put(0.0,18.0){\makebox(2.0%
,6.0)[]{\small 1}}\put(0.0,13.0){\framebox(2.0,6.0)[]{$s$}}\put(3.0,18.0){%
\makebox(11.0,6.0)[]{\small 11}}\put(3.0,13.0){\framebox(11.0,6.0)[]{$E$}}\put%
(15.0,18.0){\makebox(52.0,6.0)[]{\small 52 bits}}\put(15.0,13.0){\framebox(52.%
0,6.0)[]{$f$}}\put(133.0,17.0){$N=64$,}\put(135.0,13.0){$p=53$}\put(0.0,5.0){%
\makebox(2.0,6.0)[]{\small 1}}\put(0.0,0.0){\framebox(2.0,6.0)[]{$s$}}\put(3.0%
,5.0){\makebox(15.0,6.0)[]{\small 15}}\put(3.0,0.0){\framebox(15.0,6.0)[]{$E$}%
}\put(19.0,5.0){\makebox(112.0,6.0)[]{\small 112 bits}}\put(19.0,0.0){%
\framebox(112.0,6.0)[]{$f$}}\put(133.0,4.0){$N=128$,}\put(135.0,0.0){$p=113$}\end{picture}
Figure 3.1.1: Floating-point arithmetic. Representation of data in the binary interchange formats for binary32, binary64 and binary128 (previously single, double and quad precision).