The function is recessive (Β§2.7(iii)) at , and is defined by
| 33.2.3 | |||
or equivalently
| 33.2.4 | |||
where and are defined in Β§Β§13.14(i) and 13.2(i), and
| 33.2.5 | |||
The choice of ambiguous signs in (33.2.3) and (33.2.4) is immaterial, provided that either all upper signs are taken, or all lower signs are taken. This is a consequence of Kummerβs transformation (Β§13.2(vii)).
is a real and analytic function of on the open interval , and also an analytic function of when .
The normalizing constant is always positive, and has the alternative form
| 33.2.6 | |||
The functions are defined by
| 33.2.7 | |||
or equivalently
| 33.2.8 | |||
where , are defined in Β§Β§13.14(i) and 13.2(i),
| 33.2.9 | |||
and
| 33.2.10 | |||
the branch of the phase in (33.2.10) being zero when and continuous elsewhere. is the Coulomb phase shift.
and are complex conjugates, and their real and imaginary parts are given by
| 33.2.11 | ||||
As in the case of , the solutions and are analytic functions of when . Also, are analytic functions of when .
With arguments suppressed,
| 33.2.12 | |||
| 33.2.13 | |||
| . | |||