When |q|<1,
See also Β§17.2(i).
When 0<q<1,
Also, lnβ‘Ξqβ‘(x) is convex for x>0, and the analog of the BohrβMollerup theorem (Β§5.5(iv)) holds.
If 0<q<r<1, then
when 0<x<1 or when x>2, and
when 1<x<2.
For generalized asymptotic expansions of lnβ‘Ξqβ‘(z) as |z|ββ see Olde Daalhuis (1994) and Moak (1984). For the q-digamma or q-psi function Οqβ’(z)=Ξqβ²β‘(z)/Ξqβ‘(z) see Salem (2013).
For q-integrals see Β§17.2(v).