Jump to content

Girder

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Primefac (talk | contribs) at 16:52, 17 October 2017 (Undid revision 664374387 by 82.15.155.11 (talk) not related). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The ceiling of Hinkle Fieldhouse in Indianapolis, Indiana, was constructed of large trusses built of riveted girders.
An AASHTO prestressed concrete girder.

A girder is a support beam used in construction.[1] It is the main horizontal support of a structure which supports smaller beams. Girders often have an I-beam cross section composed of two load-bearing flanges separated by a stabilizing web, but may also have a box shape, Z shape and other forms. A girder is commonly used to build bridges.

In traditional timber framing a girder is called a girt.

Small steel girders are rolled into shape. Larger girders (1 m/3 feet deep or more) are made as plate girders, welded or bolted together from separate pieces of steel plate.[2]

The Warren type girder replaces the solid web with an open latticework between the flanges. This truss arrangement combines strength with economy of materials and can therefore be relatively light. Patented in 1848 by its designers James Warren and Willoughby Theobald Monzani, its structure consists of longitudinal members joined only by angled cross-members, forming alternately inverted equilateral triangle-shaped spaces along its length, ensuring that no individual strut, beam, or tie is subject to bending or torsional straining forces, but only to tension or compression. It is an improvement[citation needed] over the Neville truss which uses a spacing configuration of isosceles triangles.

See also

References

  1. ^ Hirol, Isami (2008). Plate-Girder Construction. BiblioBazaar. ISBN 978-0-554-88802-6.
  2. ^ Seshu, Adluri (17 Jun 2009). "Structural Steel Design: Plate Girders (class notes)" (PDF). Memorial University. Retrieved 2015-12-16.
  • Song W, Ma Z, Vadivelu J, Burdette E (2014). Transfer Length and Splitting Force Calculation for Pretension Concrete Girders with High-Capacity Strands. Journal of Bridge Engineering. 19(7), DOI 04014026.
  • Chen X, Wu S, Zhou J (2014). ”Compressive Strength of Concrete Cores with Different Lengths.” Journals Materials and Civil. Engineering, 26(7), DOI 04014027.