Portal:Dinosaurs/Selected article
Selected articles
Iguanodon is a genus of ornithopod dinosaur that lived roughly halfway between the first of the swift bipedal hypsilophodontids and the ornithopods' culmination in the duck-billed dinosaurs. Many species of Iguanodon have been named, dating from the Kimmeridgian age of the Late Jurassic Period to the Cenomanian age of the Late Cretaceous Period from Asia, Europe, and North America. However, research in the first decade of the 21st century suggests that there is only one well-substantiated species named I. bernissartensis, that lived from the late Barremian to the earliest Aptian ages (Early Cretaceous) in Belgium, between about 126 and 125 million years ago. Iguanodon's most distinctive features were its large thumb spikes, which were possibly used for defence against predators, combined with long prehensile fifth fingers able to forage for food. Named in 1825 by English geologist Gideon Mantell, Iguanodon was the second dinosaur formally named, after Megalosaurus. A large, bulky herbivore, Iguanodon is a member of Iguanodontia, along with the duck-billed hadrosaurs. (see more...)
Diplodocus (meaning 'double bar') is a genus of diplodocid sauropod dinosaur whose fossilised skeleton was first discovered in 1878. The generic name refers to its double-beamed chevron bones (Greek diplos/διπλος meaning 'double' and dokos/δοκος meaning 'wooden beam' or 'bar') located in the underside of the tail. They were initially believed to be unique to Diplodocus; however, they have since then been discovered in other diplodocids.
It lived in what is now western North America at the end of the Jurassic Period. Diplodocus was one of the more common dinosaurs found in the Upper Morrison Formation, about 150 to 147 million years ago, in what is now termed the Kimmeridgian and Tithonian stages. This was an environment and time dominated by gigantic sauropod dinosaurs such as Camarasaurus, Barosaurus, Apatosaurus and Brachiosaurus. Diplodocus is among the most easily identifiable dinosaurs, with its classic dinosaur shape, long neck and tail and four sturdy legs. For many years, it was the longest dinosaur known. Its great size may have been a deterrent to the predators Allosaurus and Ceratosaurus: their remains have been found in the same strata, which suggests they coexisted with Diplodocus. (see more...)Smaller than other dromaeosaurids like Deinonychus and Achillobator, the turkey-sized Velociraptor nevertheless shared many of the same anatomical features. It was a bipedal carnivore with a long, stiffened tail and had an enlarged, sickle-shaped claw on each hindfoot, which is thought to have been used to kill its prey. Velociraptor can be distinguished from other dromaeosaurids by its long and low skull, with an upturned snout.
Due in large part to its prominent role in Michael Crichton's novel Jurassic Park and the subsequent motion picture series, Velociraptor (commonly shortened to 'raptor') is one of the dinosaur genera most familiar to the general public. It is also well-known to paleontologists, with over a dozen recovered fossil skeletons — the most of any dromaeosaurid. One particularly famous specimen shows a Velociraptor locked in combat with a Protoceratops. (see more...)Compsognathus is a monotypic genus of small, bipedal, carnivorous theropod dinosaur. The species Compsognathus longipes was the size of a turkey and lived around 150 million years ago, the early Tithonian stage of the late Jurassic Period, in what is now Europe. Paleontologists have found two well-preserved fossils, one in Germany in the 1850s and the second in France more than a century later. Many presentations still describe Compsognathus as a "chicken-sized" dinosaur because of the small size of the German specimen, which is now believed to be a juvenile form of the larger French specimen. Compsognathus is one of the few dinosaurs for which the diet is known with certainty: the remains of small, agile lizards are preserved in the bellies of both specimens. Although not recognized as such at the time of its discovery, Compsognathus is the first theropod dinosaur known from a reasonably complete fossil skeleton. Until the 1990s, it was the smallest known non-avialan dinosaur and the closest supposed relative of the early bird Archaeopteryx. Thus, its genus is one of the few dinosaur genera to be well known outside of paleontological circles. (see more...)
Psittacosaurus is a genus of psittacosaurid ceratopsian dinosaur from the Early Cretaceous Period of what is now Asia, about 130 to 100 million years ago. It is notable for being the most species-rich dinosaur genus. Nine to eleven species are recognized from fossils found in different regions of modern-day China, Mongolia and Russia, with a possible additional species from Thailand. All species of Psittacosaurus were gazelle-sized bipedal herbivores characterized by a high, powerful beak on the upper jaw. At least one species had long, quill-like structures on its tail and lower back, possibly serving a display function. Psittacosaurus is not as familiar to the general public as its distant relative Triceratops but it is one of the most completely known dinosaur genera. Fossils of over 400 individuals have been collected so far, including many complete skeletons. Most different age classes are represented, from hatchling through to adult, which has allowed several detailed studies of Psittacosaurus growth rates and reproductive biology. The abundance of this dinosaur in the fossil record has led to establishing the Psittacosaurus biochron for the Early Cretaceous of east Asia. (see more...)
Styracosaurus was a genus of herbivorous ceratopsian dinosaur from the Cretaceous Period (Campanian stage), about 76.5 to 75.0 million years ago. It had four to six long horns extending from its neck frill, a smaller horn on each of its cheeks, and a single horn protruding from its nose, which may have reached dimensions of around 60 centimeters (2 ft) long and 15 centimeters (6 in) wide. The function or functions of the horns and frills have been the subject of debate for many years. Styracosaurus was a large dinosaur, reaching lengths of 5.5 meters (18 ft) and weighing nearly 3 tons. It stood about 1.8 meters (6 ft) tall. Styracosaurus possessed four short legs and a bulky body. Its tail was rather short. It also had a beak and flat cheek teeth, indicating that its diet was herbivorous. Like other ceratopsians, this dinosaur may have been a herd animal, traveling in large groups, as suggested by bonebeds. Named by Lawrence Lambe in 1913, Styracosaurus is a member of the Centrosaurinae. Two species, S. albertensis and S. ovatus are currently assigned to Styracosaurus. Other species assigned to the genus have since been reassigned elsewhere. (see more...)
Daspletosaurus is closely related to the much larger and more recent Tyrannosaurus. Like most known tyrannosaurids, it was a multi-ton bipedal predator equipped with dozens of large, sharp teeth. Daspletosaurus had the small forelimbs typical of tyrannosaurids, although they were proportionately longer than in other genera. It was probably similar in weight to a modern white rhinoceros or a small elephant.
As an apex predator, Daspletosaurus was at the top of the food chain, probably preying on large dinosaurs like the ceratopsid Centrosaurus and the hadrosaur Hypacrosaurus. In some areas, Daspletosaurus coexisted with another tyrannosaurid, Gorgosaurus, though there is some evidence of niche differentiation between the two. While Daspletosaurus fossils are rarer than other tyrannosaurids, the available specimens allow some analysis of the biology of these animals, including social behavior, diet and life history. (see more...)Its name refers to the unusually large, sickle-shaped talon on the second toe of each hind foot, which was probably held retracted while the dinosaur walked on the third and fourth toes. It was commonly thought that Deinonychus would kick with the sickle claw to slash at its prey but recent tests on reconstructions of similar Velociraptor talons suggest that the claw was used to stab, not slash. As in other dromaeosaurids, the tail was stiffened by a series of elongated bones and bone processes. This might have given Deinonychus greater balance and turning ability. In both the Cloverly and Antlers Formation, Deinonychus remains have been found closely associated with those of the ornithopod Tenontosaurus. Teeth discovered associated with Tenontosaurus specimens imply it was hunted or at least scavenged upon by Deinonychus.
Paleontologist John Ostrom's study of Deinonychus in the late 1960s revolutionized the way scientists thought about dinosaurs, igniting the debate on whether or not dinosaurs were warm-blooded. Before this, the popular conception of dinosaurs had been one of plodding, reptilian giants. Ostrom noted lightweight bones and stiffened tendons which revealed an active, agile predator. (see more...)Like other abelisaurids, Majungasaurus was a bipedal predator with a short snout. Although the forelimbs are not completely known, they were very short, while the hindlimbs were longer and very stocky. It can be distinguished from other abelisaurids by its wider skull, the very rough texture and thickened bone on the top of its snout, and the single rounded horn on the roof of its skull, which was originally mistaken for the dome of a pachycephalosaur. It also had more teeth in both upper and lower jaws than most abelisaurids.
Known from several well-preserved skulls and abundant skeletal material, Majungasaurus has recently become one of the best-studied theropod dinosaurs from the Southern Hemisphere. It appears to be most closely related to abelisaurids from India rather than South America or continental Africa, a fact which has important biogeographical implications. Majungasaurus was the apex predator in its ecosystem, mainly preying on sauropods like Rapetosaurus, and is also the only dinosaur for which direct evidence of cannibalism is known. (see more...)Non-avian dinosaur fossils are only found below the K–Pg boundary and became extinct immediately before or during the event. A very small number of dinosaur fossils have been found above the K-Pg boundary, but they have been explained as reworked, that is, fossils that have been eroded from their original locations then preserved in later sedimentary layers. Mosasaurs, plesiosaurs, pterosaurs and many species of plants and invertebrates also became extinct. Mammalian and bird clades passed through the boundary with few extinctions, and radiation from those Maastrichtian clades occurred well past the boundary. Rates of extinction and radiation varied across different clades of organisms.
Many scientists theorize that the K-Pg extinctions were caused by one or more catastrophic geological events such as massive asteroid impacts or increased volcanic activity. Several impact craters and massive volcanic activity in the Deccan traps have been dated to the approximate time of the extinction event. These geological events may have reduced sunlight and hindered photosynthesis, leading to a massive disruption in Earth's ecology. Other researchers believe the extinction was more gradual, resulting from slower changes in sea level or climate. (see more...)Acrocanthosaurus was a bipedal predator. As the name suggests, it is best known for the high neural spines on many of its vertebrae, which most likely supported a ridge of muscle over the animal's neck, back and hips. Acrocanthosaurus was one of the largest theropods, approaching 12 meters (40 ft) in length, and weighing up to about 2.40 metric tons (2.65 short tons). Large theropod footprints discovered in Texas may have been made by Acrocanthosaurus, although there is no direct association with skeletal remains.
Recent discoveries have elucidated many details of its anatomy, allowing for specialized studies focusing on its brain structure and forelimb function. However, there is still debate over its evolutionary relationships, with some scientists classifying it as an allosaurid, and others as a carcharodontosaurid. Acrocanthosaurus was the largest theropod in its ecosystem and likely an apex predator which possibly preyed on large sauropods and ornithopods. (see more...)Allosaurus was a large bipedal predator with a large skull, equipped with dozens of large, sharp teeth. It averaged 8.5 meters (30 ft) in length, though fragmentary remains suggest it could have reached over 12 meters (39 ft). Relative to the large and powerful hindlimbs, its three-fingered forelimbs were small, and the body was balanced by a long, heavy tail. It is classified as an allosaurid, a type of carnosaurian theropod dinosaur. The genus has a complicated taxonomy, and includes an uncertain number of valid species, the best known of which is A. fragilis. The bulk of Allosaurus remains have come from North America's Morrison Formation, with material also from Portugal and possibly Tanzania. It was known for over half of the 20th century as Antrodemus, but study of the copious remains from the Cleveland-Lloyd Dinosaur Quarry brought the name Allosaurus back to prominence, and established it as one of the best-known dinosaurs.
As the prominent large predator in the Morrison Formation, Allosaurus was at the top of the food chain, probably preying on contemporaneous large herbivorous dinosaurs. Potential prey included ornithopods, stegosaurids, and sauropods. While it is often thought of as preying on sauropod dinosaurs in groups, there is little evidence for cooperative social behavior in this genus, and individuals may have been aggressive toward each other instead. It may have attacked large prey by ambush, using its upper jaws like a hatchet. (see more...)The type, and only universally recognized species, is M. carinatus, although six other species have been named during the past 150 years. Prosauropod systematics have undergone numerous revisions during the last several years, and many scientists disagree where exactly Massospondylus lies on the dinosaur evolutionary tree. The family name Massospondylidae was once coined for the genus, but because knowledge of prosauropod relationships is in a state of flux, it is unclear which other dinosaurs—if any—belong in a natural grouping of massospondylids; several 2007 papers support the family's validity.
Although Massospondylus was long depicted as quadrupedal, a 2007 study found it to be bipedal. It was probably a herbivore, although it is speculated that the prosauropods may have been omnivorous. This animal, 4–6 meters (13–20 ft) long, had a long neck and tail, with a small head and slender body. On each of its forefeet, it bore a sharp thumb claw that was used in defense or feeding. Recent studies indicate Massospondylus grew steadily throughout its lifespan, possessed air sacs similar to those of birds, and may have cared for its young. (see more...)Tarbosaurus (meaning 'terrifying lizard') is a genus of tyrannosaurid theropod dinosaur that flourished in Asia between 70 and 65 million years ago, near the end of the Late Cretaceous Period. Fossils have been recovered in Mongolia with more fragmentary remains found further afield in parts of China. Although many species have been named, modern paleontologists recognize only one, T bataar, as valid. Some experts contend that this species is actually an Asian representative of the North American genus Tyrannosaurus; if true, this would invalidate the genus Tarbosaurus altogether.
Tarbosaurus and Tyrannosaurus are considered closely related genera, even if they are not synonymous. Alioramus, also from Mongolia, is thought by some authorities to be the closest relative of Tarbosaurus. Like most known tyrannosaurids, Tarbosaurus was a large bipedal predator, weighing more than a ton and equipped with dozens of large, sharp teeth. It had a unique locking mechanism in its lower jaw and the smallest forelimbs relative to body size of all tyrannosaurids, renowned for their disproportionately tiny, two-fingered forelimbs.
Tarbosaurus lived in a humid floodplain criss-crossed by river channels. In this environment, it was an apex predator at the top of the food chain, probably preying on other large dinosaurs like the hadrosaur Saurolophus or the sauropod Nemegtosaurus. Tarbosaurus is very well-represented in the fossil record, known from dozens of specimens, including several complete skulls and skeletons. These remains have allowed scientific studies focusing on its phylogeny, skull mechanics, and brain structure. (see more...)Gorgosaurus (meaning 'fierce lizard') is a genus of tyrannosaurid theropod dinosaur that lived in western North America during the Late Cretaceous Period, between about 77 and 74 million years ago. Fossil remains have been found in the Canadian province of Alberta and possibly the U.S. state of Montana. Paleontologists recognize only the type species, G. libratus, although other species have been erroneously referred to the genus.
Like most known tyrannosaurids, Gorgosaurus was a bipedal predator weighing more than a metric ton as an adult; dozens of large, sharp teeth lined its jaws, while its two-fingered forelimbs were comparatively small. Gorgosaurus was most closely related to Albertosaurus, and more distantly related to the larger Tyrannosaurus. Gorgosaurus and Albertosaurus are extremely similar, distinguished mainly by subtle differences in the teeth and skull bones. Some experts consider G. libratus to be a species of Albertosaurus; this would make Gorgosaurus a junior synonym of that genus.
Gorgosaurus lived in a lush floodplain environment along the edge of an inland sea. An apex predator, it was at the top of the food chain, preying upon abundant ceratopsids and hadrosaurs. In some areas, Gorgosaurus coexisted with another tyrannosaurid, Daspletosaurus. Though these animals were roughly the same size, there is some evidence of niche differentiation between the two. Gorgosaurus is the best-represented tyrannosaurid in the fossil record, known from dozens of specimens. These plentiful remains have allowed scientists to investigate its ontogeny, life history and other aspects of its biology. (see more...)Amargasaurus was a sauropod dinosaur that lived in what is now Argentina from roughly 129 to 122 million years ago, during the Early Cretaceous epoch. The only known skeleton was discovered in 1984 and is virtually complete. Amargasaurus cazaui, the only species in the genus, was a large animal reaching 9 to 10 meters (30 to 33 feet) in length, with two parallel rows of tall spines down its neck and back. The spines, taller than in any other known sauropod, probably protruded as solitary structures supporting a keratinous sheath, and may have been used for display, combat, or defense. Alternatively, they might have formed a scaffold supporting a skin sail. A herbivore, Amargasaurus probably fed at mid-height. Discovered in sedimentary rocks of the La Amarga Formation, it is most closely related to the Late Jurassic genera Dicraeosaurus, Brachytrachelopan and Suuwassea. Together, these genera form the family Dicraeosauridae, with shorter necks and smaller body sizes than other sauropods. (Full article...)
The Bone Wars is the name given to a period of intense fossil speculation and discovery during the Gilded Age of American history, marked by a heated rivalry between Edward Drinker Cope and Othniel Charles Marsh. The two paleontologists used underhanded methods to out-compete the other in the field, resorting to bribery, theft, and destruction of bones. The scientists also attacked each other in scientific publications, attempting to ruin the other's credibility and cut off his funding.
Originally colleagues who were civil to each other, Cope and Marsh became bitter enemies after several personal slights between them. Their pursuit of bones led them west to rich bone beds in Colorado, Nebraska, and Wyoming. From 1877 to 1892, both paleontologists used their wealth and influence to finance their own expeditions and to procure services and fossils from dinosaur hunters. By the end of the Bone Wars, both men exhausted their funds in fueling their intense rivalry.
Cope and Marsh were financially and socially ruined by their efforts to disgrace each other, but their contributions to science and the field of paleontology were massive; the scientists left behind tons of unopened boxes of fossils on their deaths. The feud between the two men led to over 142 new species of dinosaurs being discovered and described. The products of the Bone Wars resulted in an increase in knowledge of ancient life, and sparked the public's interest in dinosaurs, leading to continued fossil excavation in North America in the decades to come. Several historical books and fictional adaptations have also been published about this period of intense paleontological activity. (see more...)Edmontosaurus has a lengthy and complicated taxonomic history dating to the late 19th century. Various species classified with genera such as Claosaurus, Thespesius, Trachodon, and the well-known but now defunct genus Anatosaurus are now regarded as belonging to Edmontosaurus. The first fossils named Edmontosaurus were discovered in southern Alberta, Canada, in what used to be called the lower Edmonton Formation. The type species, E. regalis, was named by Lawrence Lambe in 1917, although several other species that are now classified in Edmontosaurus were named earlier. The best known of these is E. annectens, originally named by Othniel Charles Marsh in 1892 as Claosaurus annectens and known for many years as Anatosaurus annectens.
Edmontosaurus was widely distributed across western North America. The distribution of Edmontosaurus fossils suggests that it preferred coasts and coastal plains. It was an herbivore that could move on both two legs and four. Because it is known from several bone beds, Edmontosaurus is thought to have lived in groups, and may have been migratory as well. The wealth of fossils has allowed researchers to study its paleobiology in detail, including its brain, how it may have fed, and its injuries and pathologies, such as evidence for a tyrannosaur attack on one edmontosaur specimen. (see more...)Cope had little formal scientific training, and he eschewed a teaching position for field work. He made regular trips to the American West prospecting in the 1870s and 1880s, often as a member of United States Geological Survey teams. A personal feud between Cope and paleontologist Othniel Charles Marsh led to a period of intense fossil-finding competition now known as the Bone Wars. Cope's financial fortunes soured after failed mining ventures in the 1880s, forcing him to sell off much of his fossil collection. He experienced a resurgence in his career toward the end of his life before dying of unidentified causes on April 12, 1897.
Cope's scientific pursuits nearly bankrupted him, but his contributions helped to define the field of American paleontology. He was a prodigious writer, with 1,400 papers published over his lifetime, although his rivals would debate the accuracy of his rapidly published works. He discovered, described, and named more than 1,000 vertebrate species including hundreds of fishes and dozens of dinosaurs. His proposals on the origin of mammalian molars and for the gradual enlargement of mammalian species over geologic time ("Cope's Law") are notable among his theoretical contributions. (see more...)Dinosaurs are vertebrates that have ranged from reptile-like to bird-like. Dinosaurs dominated the terrestrial ecosystem for over 160 million years from around 230 million years ago until 65 million years ago, at the end of the Cretaceous period, when all non-avian dinosaurs became extinct. Knowledge about dinosaurs comes from both fossil and non-fossil records, including fossilized bones, feces, trackways, gastroliths, feathers, impressions of skin, internal organs and soft tissues. Dinosaur remains have been found on every continent on Earth, including Antarctica, showing that all land masses were at one time connected in a supercontinent called Pangaea. The ongoing dinosaur renaissance began in the 1970s and was triggered, in part, by John Ostrom's discovery of Deinonychus, an active, vicious predator that may have been warm-blooded (homeothermic), in contrast to the prevailing image of dinosaurs as sluggish and cold-blooded. Vertebrate paleontology has also become a global science, with major new discoveries in previously unexploited regions, most significantly the amazingly well-preserved feathered dinosaurs in China, which have further solidified the link between dinosaurs and their living descendants, modern birds. (see more...)