- Azzolini, O;
- Barrera, MT;
- Beeman, JW;
- Bellini, F;
- Beretta, M;
- Biassoni, M;
- Bossio, E;
- Brofferio, C;
- Bucci, C;
- Canonica, L;
- Capelli, S;
- Cardani, L;
- Carniti, P;
- Casali, N;
- Cassina, L;
- Clemenza, M;
- Cremonesi, O;
- Cruciani, A;
- D’Addabbo, A;
- Dafinei, I;
- Domizio, S Di;
- Ferroni, F;
- Gironi, L;
- Giuliani, A;
- Gorla, P;
- Gotti, C;
- Keppel, G;
- Martinez, M;
- Morganti, S;
- Nagorny, S;
- Nastasi, M;
- Nisi, S;
- Nones, C;
- Orlandi, D;
- Pagnanini, L;
- Pallavicini, M;
- Palmieri, V;
- Pattavina, L;
- Pavan, M;
- Pessina, G;
- Pettinacci, V;
- Pirro, S;
- Pozzi, S;
- Previtali, E;
- Puiu, A;
- Rusconi, C;
- Schäffner, K;
- Tomei, C;
- Vignati, M;
- Zolotarova, A
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by α particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn 82 Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the α background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.