Inspired by nature, chemists have spent the last 50 years systematically designing and synthesizing a vast array of sugar-modified nucleic acids, so-called xenonucleic acids (XNAs), collectively forming what we now describe as the XNA alphabet. Within the alphabet, systems can be categorized into two major groups: those capable of interacting with natural nucleic acids and those that do not cross-pair with DNA or RNA. The sugar component of XNAs plays a crucial role in defining their conformational space, which, in turn, influences their hybridization properties and potential applications across biotechnology and synthetic biology. This review provides an overview of sugar-modified XNA systems developed to date as well as the geometric parameters and physicochemical principles that have enhanced our understanding of XNA conformational behavior, particularly in relation to their orthogonality to (i.e. inability to cross-pair with) natural nucleic acids. These insights are essential for developing a more rational approach to key processes such as XNA replication and evolution, ultimately paving the way for applications in areas including synthetic genetics, nucleic acid therapeutics, diagnostics, and nanotechnology.