FOLLOWER FORCES IN PRE-STRESSED FIXED-FIXED RODS TO MIMIC OSCILLATORY BEATING OF ACTIVE FILAMENTS
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

FOLLOWER FORCES IN PRE-STRESSED FIXED-FIXED RODS TO MIMIC OSCILLATORY BEATING OF ACTIVE FILAMENTS

Abstract

Flagella and cilia are examples of actively oscillating, whiplike biological filaments that are crucial to processes as diverse as locomotion, mucus clearance, embryogenesis and cell motility. Elastic driven rod-like filaments subjected to compressive follower forces provide a way to mimic oscillatory beating in synthetic settings. In the continuum limit, this spatiotemporal response is an emergent phenomenon resulting from the interplay between the structural elastic instability of the slender rods subjected to the non-conservative follower forces, geometric constraints that control the onset of this instability, and viscous dissipation due to fluid drag by ambient media. In this paper, we use an elastic rod model to characterize beating frequencies, the critical follower forces and the non-linear rod shapes, for prestressed, clamped rods subject to two types of fluid drag forces, namely, linear Stokes drag and non-linear Morrison drag. We find that the critical follower force depends strongly on the initial slack and weakly on the nature of the drag force. The emergent frequencies however, depend strongly on both the extent of pre-stress as well as the nature of the fluid drag.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View