Realizing tunable Fermi level in SnTe by defect control.
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Realizing tunable Fermi level in SnTe by defect control.

Abstract

The tuning of the Fermi level in tin telluride, a topological crystalline insulator, is essential for accessing its unique surface states and optimizing its electronic properties for applications such as spintronics and quantum computing. In this study, we demonstrate that the Fermi level in tin telluride can be effectively modulated by controlling the tin concentration during chemical vapor deposition synthesis. By introducing tin-rich conditions, we observed a blue shift in the X-ray photoelectron spectroscopy core-level peaks of both tin and tellurium, indicating an upward shift in the Fermi level. This shift is corroborated by a decrease in work function values measured via ultraviolet photoelectron spectroscopy, confirming the suppression of Sn vacancies. Our findings provide a low-cost, scalable method to achieve tunable Fermi levels in tin telluride, offering a significant advancement in the development of materials with tailored electronic properties for next-generation technological applications. .

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View