Skip to main content
eScholarship
Open Access Publications from the University of California

Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

Abstract

We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76×106 tritium β-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0=18.57 keV. We consider the 3ν+1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m42≲1600 eV2 and active-to-sterile mixing |Ue4|2≳6×10-3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m42 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Δm412 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Δm412 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Δm412 through a robust spectral shape analysis.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View