Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Antegrade Conduction Rescues Right Ventricular Pacing-Induced Cardiomyopathy in Complete Heart Block

Abstract

Background

Right ventricular (RV) pacing-induced cardiomyopathy (PICM) occurs in ∼30% of patients with RV leads. This study evaluated the long-term effects of restoring antegrade conduction with a biological pacemaker in a porcine model of RV PICM.

Objectives

The goal of this study was to determine if antegrade biological pacing can attenuate RV PICM.

Methods

In pigs with complete atrioventricular (AV) block, transcription factor T-box 18 (TBX18) was injected into the His bundle region in either of 2 experimental protocols: protocol A sought to prevent PICM, and protocol B sought to reverse PICM. In protocol A, we injected adenoviral vectors expressing TBX18 (or the reporter construct green fluorescent protein) after AV node ablation, and observed the animals for 8 weeks. In protocol B, PICM was established by using AV node ablation and 4 weeks of electronic RV pacing, at which point TBX18 was injected into the His bundle region.

Results

In protocol A, TBX18 biological pacing led to superior chronotropic support (62.4 ± 3 beats/min vs. 50.4 ± 0.4 beats/min; p = 0.01), lower backup pacemaker utilization (45 ± 2.6% vs. 94.6 ± 1.4%; p = 0.001), and greater ejection fraction (58.5 ± 1.3% vs. 46.7 ± 2%; p = 0.001). In protocol B, full-blown RV PICM was evident 4 weeks after complete AV block in both groups; subsequent intervention led to higher mean heart rate (56 ± 2 beats/min vs. 50.1 ± 0.4 beats/min; p = 0.05), less backup pacemaker utilization (53 ± 8.2% vs. 95 ± 1.6%; p = 0.003), and a greater ejection fraction (61.7 ± 1.3% vs. 49 ± 1.6%; p = 0.0003) in TBX18-injected animals versus control animals.

Conclusions

In a preclinical model, pacemaker-induced cardiomyopathy can be prevented, and reversed, by restoring antegrade conduction with TBX18 biological pacing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View