Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects

Abstract

Exponential-family random graph models (ERGMs) represent the processes that govern the formation of links in networks through the terms selected by the user. The terms specify network statistics that are sufficient to represent the probability distribution over the space of networks of that size. Many classes of statistics can be used. In this article we describe the classes of statistics that are currently available in the ergm package. We also describe means for controlling the Markov chain Monte Carlo (MCMC) algorithm that the package uses for estimation. These controls affect either the proposal distribution on the sample space used by the underlying Metropolis-Hastings algorithm or the constraints on the sample space itself. Finally, we describe various other arguments to core functions of the ergm package.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View