Beckman Laser Institute & Medical Clinic
BLI Publications (2463)
Noninvasive Measurement of Ablation Crater Size and Thermal Injury after CO2 Laser in the Vocal Cord with Optical Coherence Tomography
Objective
To characterize tissue destruction after CO(2) laser-ablation of the vocal cords with the use of optical coherence tomography (OCT).Study design and setting
OCT was used to image fresh porcine vocal cords after laser ablation. OCT and histology estimates of the ablation crater dimensions and the depth of thermal injury were obtained.Results
The vocal cord substructures up to 2.29 mm in depth at 10 microm resolution, and the thermal disruption after laser ablation were identified by OCT. OCT and histology estimates of the lesion dimensions showed no significant differences. Crater depth is directly proportional to laser power, whereas crater width and the zone of thermal injury appear to be unrelated to laser power.Conclusions
OCT may be used to accurately characterize the native states and the laser-induced thermal injury of laryngeal mucosa, within the inherent limitation in its depth of penetration. OCT may be a useful diagnostic and monitoring tool in an otolaryngology practice.Histologic changes associated with talaporfin sodium-mediated photodynamic therapy in rat skin.
Background and objective
Alternative treatments are needed to achieve consistent and more complete port wine stain (PWS) removal, especially in darker skin types; photodynamic therapy (PDT) is a promising alternative treatment. To this end, we previously reported on Talaporfin Sodium (TS)-mediated PDT. It is essential to understand treatment tissue effects to design a protocol that will achieve selective vascular injury without ulceration and scarring. The objective of this work is to assess skin changes associated with TS-mediated PDT with clinically relevant treatment parameters.Study design/materials and methods
We performed TS (0.75 mg/kg)-mediated PDT (664 nm) on Sprague Dawley rats. Radiant exposures were varied between 15 and 100 J/cm2 . We took skin biopsies from subjects at 9 hours following PDT. We assessed the degree and depth of vascular and surrounding tissue injury using histology and immunohistochemical staining.Results
TS-mediated PDT at 0.75 mg/kg combined with 15 and 25 J/cm2 light doses resulted in vascular injury with minimal epidermal damage. At light dose of 50 J/cm2 , epidermal damage was noted with vascular injury. At light doses >50 J/cm2 , both vascular and surrounding tissue injury were observed in the forms of vasculitis, extravasated red blood cells, and coagulative necrosis. Extensive coagulative necrosis involving deeper adnexal structures was observed for 75 and 100 J/cm2 light doses. Observed depth of injury increased with increasing radiant exposure, although this relationship was not linear.Conclusion
TS-mediated PDT can cause selective vascular injury; however, at higher light doses, significant extra-vascular injury was observed. This information can be used to contribute to design of safe protocols to be used for treatment of cutaneous vascular lesions. Lasers Surg. Med. 49:767-772, 2017. © 2017 Wiley Periodicals, Inc.Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore
Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response of the kinetochore from its length change. In both mammalian PtK1 cells and in the fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtubule severing. Interestingly, the inner kinetochore-centromere relaxed faster than the outer kinetochore. Whereas in fission yeast all kinetochores relaxed to a similar length, in PtK1 cells the more stretched kinetochores remained more stretched. Simple models suggest that these differences arise because the mechanical structure of the mammalian kinetochore is more complex. Our study establishes merotelic kinetochores as an experimental model for studying the mechanical response of the kinetochore in live cells and reveals a viscoelastic behavior of the kinetochore that is conserved in yeast and mammalian cells.