174 results sorted by ID
Possible spell-corrected query: prf
A Combined Design of 4-PLL-TRNG and 64-bit CDC-7-XPUF on a Zynq-7020 SoC
Oğuz Yayla, Yunus Emre Yılmaz
Implementation
True Random Number Generators (TRNGs) and Physically Unclonable Functions (PUFs) are critical hardware primitives for cryptographic systems, providing randomness and device-specific security. TRNGs require complete randomness, while PUFs rely on consistent, device-unique responses. In this work, both primitives are implemented on a System-on-Chip Field-Programmable Gate Array (SoC FPGA), leveraging the integrated Phase-Locked Loops (PLLs) for robust entropy generation in PLLbased TRNGs. A...
32-bit and 64-bit CDC-7-XPUF Implementations on a Zynq-7020 SoC
Oğuz Yayla, Yunus Emre Yılmaz
Implementation
Physically (or Physical) Unclonable Functions (PUFs) are basic and useful primitives in designing cryptographic systems. PUFs are designed to facilitate device authentication, secure boot, firmware integrity, and secure communications. To achieve these objectives, PUFs must exhibit both consistent repeatability and instance-specific randomness. The Arbiter PUF (APUF), recognized as the first silicon PUF, is capable of generating a substantial number of secret keys instantaneously based on...
Secure Implementation of SRAM PUF for Private Key Generation
Raja Adhithan Radhakrishnan
Implementation
This paper endeavors to securely implement a Physical Unclonable
Function (PUF) for private data generation within Field-Programmable
Gate Arrays (FPGAs). SRAM PUFs are commonly utilized due to their
use of memory devices for generating secret data, particularly in resource constrained devices. However, their reliance on memory access poses side-channel threats such as data remanence decay and memory-based attacks, and the time required to generate secret data is significant. To address...
Harmonizing PUFs for Forward Secure Authenticated Key Exchange with Symmetric Primitives
Harishma Boyapally, Durba Chatterjee, Kuheli Pratihar, Sayandeep Saha, Debdeep Mukhopadhyay, Shivam Bhasin
Cryptographic protocols
Physically Unclonable Functions (PUFs) have been a potent choice for enabling low-cost, secure communication. However, in most applications, one party holds the PUF, and the other securely stores the challenge-response pairs (CRPs).
It does not remove the need for secure storage entirely, which is one of the goals of PUFs.
This paper proposes a PUF-based construction called Harmonizing PUFs ($\textsf{H_PUF}$s), allowing two independent PUFs to generate the same outcome without storing...
Estimating the Unpredictability of Multi-Bit Strong PUF Classes
Ahmed Bendary, Wendson A. S. Barbosa, Andrew Pomerance, C. Emre Koksal
Foundations
With the ongoing advances in machine learning (ML), cybersecurity solutions and security primitives are becoming increasingly vulnerable to successful attacks. Strong physically unclonable functions (PUFs) are a potential solution for providing high resistance to such attacks. In this paper, we propose a generalized attack model that leverages multiple chips jointly to minimize the cloning error. Our analysis shows that the entropy rate over different chips is a relevant measure to the new...
Strong PUF Security Metrics: Sensitivity of Responses to Single Challenge Bit Flips
Wolfgang Stefani, Fynn Kappelhoff, Martin Gruber, Yu-Neng Wang, Sara Achour, Debdeep Mukhopadhyay, Ulrich Rührmair
Applications
This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong Physical Unclonable Functions (PUFs). These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial complexity analyses, and allow simple iterative design optimization. Moreover, they are computationally more efficient and far easier to...
A note on PUF-Based Robust and Anonymous Authentication and Key Establishment Scheme for V2G Networks
Milad Seddigh, Seyed Hamid Baghestani
Cryptographic protocols
Vehicle-to-grid (V2G) provides effective charging services, allows bidirectional energy communication between the power grid and electric vehicle (EV), and reduces environmental pollution and energy crises. Recently, Sungjin Yu et al. proposed a PUF-based, robust, and anonymous authentication and key establishment scheme for V2G networks. In this paper, we show that the proposed protocol does not provide user anonymity and is vulnerable to tracing attack. We also found their scheme is...
Secure Encryption and Key Exchange using Arbiter PUF
Raja Adhithan Radhakrishnan
This paper introduces a novel approach to enhancing cryp-
tographic security. It proposes the use of one-time message sharing com-
bined with Physically Unclonable Functions (PUF) to securely exchange
keys and generate an S-subbyte-box for encryption. This innovative tech-
nique aims to elevate the security standards of cryptographic applica-
tions.
Authentica: A Secure Authentication Mechanism using a Software-defined Unclonable Function
Ripon Patgiri, Laiphrakpam Dolendro Singh
Applications
Password-based authentication is an extensively used method to authenticate users. It uses cryptography to communicate the authentication process. On the contrary, the physically unclonable function (PUF)-based authentication mechanism is also gaining popularity rapidly due to its usability in IoT devices. It is a lightweight authentication mechanism that does not use cryptography protocol. PUF-based authentication mechanisms cannot authenticate users. To overcome the drawback of PUF, we...
Cryptanalysis of Strong Physically Unclonable Functions
Liliya Kraleva, Mohammad Mahzoun, Raluca Posteuca, Dilara Toprakhisar, Tomer Ashur, Ingrid Verbauwhede
Attacks and cryptanalysis
Physically Unclonable Functions (PUFs) are being proposed as a low cost alternative to permanently store secret keys or provide device authentication without requiring non-volatile memory, large e-fuses or other dedicated processing steps. In the literature, PUFs are split into two main categories. The so-called strong PUFs are mainly used for authentication purposes, hence also called authentication PUFs. They promise to be lightweight by avoiding extensive digital post-processing and...
Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization
Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, Debdeep Mukhopadhyay
Attacks and cryptanalysis
Recent advancements in low-cost cryptography have converged upon the use of nanoscale level structural variances as sources of entropy that is unique to each device. Consequently, such delay-based Physically Unclonable Functions or (PUFs) have gained traction for several cryptographic applications. In light of recent machine learning (ML) attacks on delay-based PUFs, the common trend among PUF designers is to either introduce non-linearity using XORs or input transformations applied on the...
Side-Channel Resistant Implementation Using Arbiter PUF
Raja Adhithan RadhaKrishnan
Implementation
The goals of cryptography are achieved using mathematically strong crypto-algorithms, which are adopted for securing data and
communication. Even though the algorithms are mathematically
secure, the implementation of these algorithms may be vulnerable to
side-channel attacks such as timing and power analysis attacks. One
of the effective countermeasures against such attacks is Threshold Implementation(TI). However, TI realization in crypto-device introduces
hardware complexity, so it...
Systematically Quantifying Cryptanalytic Non-Linearities in Strong PUFs
Durba Chatterjee, Kuheli Pratihar, Aritra Hazra, Ulrich Rührmair, Debdeep Mukhopadhyay
Attacks and cryptanalysis
Physically Unclonable Functions~(PUFs) with large challenge space~(also called Strong PUFs) are promoted for usage in authentications and various other cryptographic and security applications. In order to qualify for these cryptographic applications, the Boolean functions realized by PUFs need to possess a high non-linearity~(NL). However, with a large challenge space~(usually $\geq 64$ bits), measuring NL by classical techniques like Walsh transformation is computationally infeasible. In...
Security Analysis of Delay-Based Strong PUFs with Multiple Delay Lines
Anita Aghaie, Amir Moradi, Johannes Tobisch, Nils Wisiol
Applications
Using a novel circuit design, we investigate if the
modeling-resistance of delay-based, CMOS-compatible strong
PUFs can be increased by the usage of multiple delay lines.
Studying a circuit inspired by the Arbiter PUF, but using four
instead of merely two delay lines, we obtain evidence showing
that the usage of many delay lines does not significantly increase
the security of the strong PUF circuit. Based on our findings, we
suggest future research directions.
2022/1402
Last updated: 2025-04-28
Sorting Attacks Resilient Authentication Protocol for CMOS Image Sensor Based PUF
Chandan Kumar, Mahendra Rathor, Urbi Chatterjee
Applications
Physically Unclonable Functions (PUFs) have emerged as a viable and cost-effective method for device authentication and key generation. Recently, CMOS image sensors have been exploited as PUF for hardware fingerprinting in mobile devices. As CMOS image sensors are readily available in modern devices such as smartphones, laptops etc., it eliminates the need for additional hardware for implementing a PUF structure. In ISIC2014, an authentication protocol has been proposed to generate PUF...
Security and Quantum Computing: An Overview
Prasannna Ravi, Anupam Chattopadhyay, Shivam Bhasin
Applications
The promise of scalable quantum computing is causing major upheaval in the domain of cryptography and security. In this perspective paper, we review the progress towards the realization of large-scale quantum computing. We further summarize the imminent threats towards existing cryptographic primitives. To address this challenges, there is a consolidated effort towards the standardization of new cryptographic primitives, namely post-quantum cryptography (PQC). We discuss the underlying...
A Theoretical Framework for the Analysis of Physical Unclonable Function Interfaces and its Relation to the Random Oracle Model
Marten van Dijk, Chenglu Jin
Foundations
Analysis of advanced Physical Unclonable Function (PUF) applications and protocols rely on assuming that a PUF behaves like a random oracle, that is, upon receiving a challenge, a uniform random response with replacement is selected, measurement noise is added, and the resulting response is returned. In order to justify such an assumption, we need to rely on digital interface computation that to some extent remains confidential -- otherwise, information about PUF challenge response pairs...
PUF-COTE: A PUF Construction with Challenge Obfuscation and Throughput Enhancement
Boyapally Harishma, Durba Chatterjee, Kuheli Pratihar, Sayandeep Saha, Debdeep Mukhopadhyay
Foundations
Physically Unclonable Functions~(PUFs) have been a potent choice for enabling low-cost, secure communication. However, the state-of-the-art strong PUFs generate single-bit response. So, we propose PUF-COTE: a high throughput architecture based on linear feedback shift register and a strong PUF as the ``base''-PUF. At the same time, we obfuscate the challenges to the ``base''-PUF of the final construction.
We experimentally evaluate the quality of the construction by implementing it on Artix...
Comment on ``SRAM-PUF Based Entities Authentication Scheme for Resource-constrained IoT Devices''
Michael Amar, Amit Kama, Kang Wang, Yossi Oren
Implementation
The cloud-based Internet of Things (IoT) creates opportunities for more direct integration of the physical world and computer-based systems, allowing advanced applications based on sensing, analyzing and controlling the physical world.
IoT deployments, however, are at a particular risk of counterfeiting, through which an adversary can corrupt the entire ecosystem. Therefore, entity authentication of edge devices is considered an essential part of the security of IoT systems.
A recent paper...
PAC Learnability of iPUF Variants
Durba Chatterjee, Debdeep Mukhopadhyay, Aritra Hazra
Foundations
Interpose PUF~(iPUF) is a strong PUF construction that was shown to be vulnerable against empirical machine learning as well as PAC learning attacks. In this work, we extend the PAC Learning results of Interpose PUF to prove that the variants of iPUF are also learnable in the PAC model under the Linear Threshold Function representation class.
More Lessons: Analysis of PUF-based Authentication Protocols for IoT
Karim Lounis, Mohammad Zulkernine
Cryptographic protocols
Authentication constitutes the foundation and vertebrae of all security properties. It is the procedure in which
communicating parties prove their identities to each other, and generally establish and derive secret keys to enforce other
services, such as confidentiality, data integrity, non-repudiation, and availability. PUFs (Physical Unclonable Functions) has been the subject of many subsequent publications on lightweight, lowcost, and secure-by-design authentication protocols. This has...
How do the Arbiter PUFs Sample the Boolean Function Class?
Animesh Roy, Dibyendu Roy, Subhamoy Maitra
Secret-key cryptography
Arbiter based Physical Unclonable Function (sometimes called Physically Unclonable Function, or in short PUF) is a hardware based pseudorandom bit generator. The pseudorandomness in the output bits depends on device specific parameters. For example, based on the delay parameters, an $n$-length Arbiter PUF can be considered as an n-variable Boolean function. We note that the random variation of the delay parameters cannot exhaust all the Boolean functions and the class is significantly...
A Tale of Twin Primitives: Single-chip Solution for PUFs and TRNGs
Kuheli Pratihar, Urbi Chatterjee, Manaar Alam, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty
Implementation
Physically Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are two highly useful hardware primitives to build up the root-of-trust for an embedded device. PUFs are designed to offer repetitive and instance-specific
randomness, whereas TRNGs are expected to be invariably random. In this paper, we present a dual-mode PUF-TRNG design that utilises two different hardware-intrinsic properties, i.e. oscillation frequency of the Transition Effect Ring Oscillator (TERO)
cell...
Towards Attack Resilient Arbiter PUF-Based Strong PUFs
Nils Wisiol
We present the LP-PUF, a novel, Arbiter PUF-based, CMOS-compatible strong PUF design. We explain the motivation behind the design choices for LP-PUF and show evaluation results to demonstrate that LP-PUF has good uniqueness, low bias, and fair bit sensitivity and reliability values. Furthermore, based on analyses and discussion of the LR and splitting attacks, the reliability attacks, and MLP attack, we argue that the LP-PUF has potential to be secure against known PUF modeling attacks,...
PUF Security: Reviewing The Validity of Spoofing Attack Against Safe is the New Smart
Karim Lounis
Foundations
Due to the heterogeneity and the particular security requirements of IoT (Internet of Things), developing secure, low-cost, and lightweight authentication protocols has become a serious challenge. This has excited the research community to design and develop new authentication protocols that meet IoT requirements. An interesting hardware technology, called PUFs (Physical Unclonable Functions), has been the subject of many subsequent publications on lightweight, low-cost, and secure-by-design...
When the Decoder Has to Look Twice: Glitching a PUF Error Correction
Jonas Ruchti, Michael Gruber, Michael Pehl
Attacks and cryptanalysis
Physical Unclonable Functions (PUFs) have been increasingly used as an alternative to non-volatile memory for the storage of cryptographic secrets. Research on side channel and fault attacks with the goal of extracting these secrets has begun to gain interest but no fault injection attack targeting the necessary error correction within a PUF device has been shown so far. This work demonstrates one such attack on a hardware fuzzy commitment scheme implementation and thus shows a new potential...
Analysis and Protection of the Two-metric Helper Data Scheme
Lars Tebelmann, Ulrich Kühne, Jean-Luc Danger, Michael Pehl
To compensate for the poor reliability of Physical Unclonable Function (PUF) primitives, some low complexity solutions not requiring error-correcting codes (ECC) have been proposed. One simple method is to discard less reliable bits, which are indicated in the helper data stored inside the PUF. To avoid discarding bits, the Two-metric Helper Data (TMH) method, which particularly applies to oscillation-based PUFs, allows to keep all bits by using different metrics when deriving the PUF...
Learnability of Multiplexer PUF and $S_N$-PUF : A Fourier-based Approach
Durba Chatterjee, Debdeep Mukhopadhyay, Aritra Hazra
Foundations
In this work, we prove that Multiplexer PUF~(MPUF) and $S_N$-PUF are learnable in the PAC model. First, we show that both the designs can be represented as a function of Linear Threshold Functions. We show that the noise sensitivity of $(n,k)$-MPUF and $S_N$-PUF can be bounded by $O(2^{k} \sqrt{\epsilon})$ and $O(N\sqrt{\epsilon})$ respectively. Finally, we show that as a result of bounded noise sensitivity, both the designs can be accurately approximated using low degree algorithm. Also,...
Autonomous Secure Remote Attestation even when all Used and to be Used Digital Keys Leak
Marten van Dijk, Deniz Gurevin, Chenglu Jin, Omer Khan, Phuong Ha Nguyen
Cryptographic protocols
We provide a new remote attestation scheme for secure processor technology, which is secure in the presence of an All Digital State Observing (ADSO) adversary. To accomplish this, we obfuscate session signing keys using a silicon Physical Unclonable Function (PUF) with an extended interface that combines the LPN-PUF concept with a repetition code for small failure probabilities, and we introduce a new signature scheme that only needs a message dependent subset of a session signing key for...
Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited
Nils Wisiol, Bipana Thapaliya, Khalid T. Mursi, Jean-Pierre Seifert, Yu Zhuang
Foundations
By revisiting, improving, and extending recent neural-network based modeling attacks on XOR Arbiter PUFs from the literature, we show that XOR Arbiter PUFs, (XOR) Feed-Forward Arbiter PUFs, and Interpose PUFs can be attacked faster, up to larger security parameters, and with fewer challenge-response pairs than previously known both in simulation and in silicon data.
To support our claim, we discuss the differences and similarities of recently proposed modeling attacks and offer a fair...
Inconsistency of Simulation and Practice in Delay-based Strong PUFs
Anita Aghaie, Amir Moradi
Implementation
The developments in the areas of strong Physical Unclonable Functions (PUFs) predicate an ongoing struggle between designers and attackers. Such a combat motivated the atmosphere of open research, hence enhancing PUF designs in
the presence of Machine Learning (ML) attacks. As an example of this controversy, at CHES 2019, a novel delay-based PUF (iPUF) has been introduced and claimed to be resistant against various ML and reliability attacks. At CHES 2020, a new
divide-and-conquer modeling...
On the Validity of Spoofing Attack Against Safe is the New Smart
Harishma Boyapally, Urbi Chatterjee, Debdeep Mukhopadhyay
Applications
Recently, a light-weight authenticated key-exchange (AKE) scheme has been proposed. The scheme provides mutual authentication. It is asymmetric in nature by delegating complex cryptographic operations to resource-equipped servers, and carefully managing the workload on resource-constrained Smart meter nodes by using Physically Unclonable Functions. The prototype Smart meter built using commercial-off-the-shelf products is enabled with a low-cost countermeasure against load-modification...
Clonable PUF: On the Design of PUFs That Share Equivalent Responses
Takashi Sato, Yuki Tanaka, Song Bian
Implementation
While numerous physically unclonable functions (PUFs) were proposed in recent years, the conventional PUF-based authentication model is centralized by the data of challenge-response pairs (CRPs), particularly when $n$-party authentication is required. In this work, we propose a novel concept of clonable PUF (CPUF), wherein two or more PUFs having
equivalent responses are manufactured to facilitate decentralized authentication. By design, cloning is only possible in the fabrication period...
Key Agreement with Physical Unclonable Functions and Biometric Identifiers
Onur Gunlu
Foundations
This thesis addresses security and privacy problems for digital devices and biometrics, where a secret key is generated for authentication, identification, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices. A low-complexity transform-coding algorithm is developed to make the information-theoretic analysis tractable and motivate a noisy (hidden) PUF source model.
The optimal trade-offs between the secret-key,...
Everlasting UC Commitments from Fully Malicious PUFs
Bernardo Magri, Giulio Malavolta, Dominique Schröder, Dominique Unruh
Foundations
Everlasting security models the setting where hardness assumptions hold during the execution of a protocol but may get broken in the future. Due to the strength of this adversarial model, achieving any meaningful security guarantees for composable protocols is impossible without relying on hardware assumptions (Müller-Quade and Unruh, JoC'10). For this reason, a rich line of research has tried to leverage physical assumptions to construct well-known everlasting cryptographic primitives, such...
Secret Key Agreement with Physical Unclonable Functions: An Optimality Summary
Onur Gunlu, Rafael F. Schaefer
Foundations
We address security and privacy problems for digital devices and biometrics from an information-theoretic optimality perspective, where a secret key is generated for authentication, identification, message encryption/decryption, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices and this review gives the most relevant summary for information theorists, coding theorists, and signal processing community members who are...
Entropy Estimation of Physically Unclonable Functions with Offset Error
Mitsuru Shiozaki, Yohei Hori, Takeshi Fujino
Implementation
Physically unclonable functions (PUFs) are gaining attention as a promising cryptographic technique, with the main applications including challenge-response authentication and key generation (key storage). When a PUF is applied to these applications, min-entropy estimation is essential. Min-entropy is a measure of the lower bound of the unpredictability of PUF responses. Using the test suite of the National Institute of Standards and Technology (NIST) specification (SP) 800-90B is currently...
Profiled Deep Learning Side-Channel Attack on a Protected Arbiter PUF Combined with Bitstream Modification
Yang Yu, Michail Moraitis, Elena Dubrova
Applications
In this paper we show that deep learning can be used to identify the shape of power traces corresponding to the responses of a protected arbiter PUF implemented in FPGAs. To achieve that, we combine power analysis with bitstream modification. We train a CNN classifier on two 28nm XC7 FPGAs implementing 128-stage arbiter PUFs and then classify the responses of PUFs from two other FPGAs.
We demonstrate that it is possible to reduce the number of traces required for a successful attack to a...
Combining Optimization Objectives: New Machine-Learning Attacks on Strong PUFs
Johannes Tobisch, Anita Aghaie, Georg T. Becker
Applications
Strong Physical Unclonable Functions (PUFs), as a promising security primitive, are supposed to be a lightweight alternative to classical cryptography for purposes such as device authentication. Most of the proposed candidates, however, have been plagued by machine-learning attacks breaking their security claims. The Interpose PUF (iPUF), which has been introduced at CHES 2019, was explicitly designed with state-of-the-art machine-learning attacks in mind and is supposed to be impossible to...
2020/922
Last updated: 2021-04-06
Security Challenges in Smart Grid and Suitable Countermeasures
Soumyadyuti Ghosh, Urbi Chatterjee, Durba Chatterjee, Rumia Masburah, Debdeep Mukhopadhyay, Soumyajit Dey
Implementation
In recent years, the conventional power grid system has been streamlined towards Smart grid infrastructure that empowers two-way communication between the consumers and the utility providers. This however also makes the grid more susceptible towards faults as well as physical and cyber attacks. In this work, we propose a Physically Unclonable Function (PUF) and Blockchain based detection and prevention mechanism to secure the Smart grid system against such faults and adversarial threats. In...
Machine Learning of Physical Unclonable Functions using Helper Data - Revealing a Pitfall in the Fuzzy Commitment Scheme
Emanuele Strieder, Christoph Frisch, Michael Pehl
Cryptographic protocols
Physical Unclonable Functions (PUFs) are used in various key-generation schemes and protocols. Such schemes are deemed to be secure even for PUFs with challenge-response behavior, as long as no responses and no reliability information about the PUF are exposed. This work, however, reveals a pitfall in these constructions: When using state-of-the-art helper data algorithms to correct noisy PUF responses, an attacker can exploit the publicly accessible helper data and challenges. We show that...
Secure Update of FPGA-based Secure Elements using Partial Reconfiguration
Florian Unterstein, Tolga Sel, Thomas Zeschg, Nisha Jacob, Michael Tempelmeier, Michael Pehl, Fabrizio De Santis
Applications
Secure Elements (SEs) are hardware trust anchors which provide cryptographic services including secure storage of secret keys and certificates. In long-living devices certain cryptographic functions might get insecure over time, e.g. new implementation attacks or bugs are discovered, and might require to be updated. On FPGAs, partial reconfiguration (PR) offers the opportunity to overcome this issue by replacing buggy or outdated hardware on the fly. This work provides an architecture for an...
Signal Injection Attack on Time-to-Digital Converter and Its Application to Physically Unclonable Function
Takeshi Sugawara, Tatsuya Onuma, Yang Li
Implementation
Physically unclonable function (PUF) is a technology to generate a device-unique identifier using process variation. PUF enables a cryptographic key that appears only when the chip is active, providing an efficient countermeasure against reverse-engineering attacks. In this paper, we explore the data conversion that digitizes a physical quantity representing PUF’s uniqueness into a numerical value as a new attack surface. We focus on time-to-digital converter (TDC) that converts time...
Interpose PUF can be PAC Learned
Durba Chatterjee, Debdeep Mukhopadhyay, Aritra Hazra
Foundations
In this work, we prove that Interpose PUF is learnable in the PAC model. First, we show that Interpose PUF can be approximated by a Linear Threshold Function~(LTF), assuming the interpose bit to be random. We translate the randomness in the interpose bit to classification noise of the hypothesis. Using classification noise model, we prove that the resultant LTF can be learned with number of labelled examples~(challenge response pairs) polynomial in the number of stages and PAC model parameters.
Low-complexity and Reliable Transforms for Physical Unclonable Functions
Onur Gunlu, Rafael F. Schaefer
Foundations
Noisy measurements of a physical unclonable function (PUF) are used to store secret keys with reliability, security, privacy, and complexity constraints. A new set of low-complexity and orthogonal transforms with no multiplication is proposed to obtain bit-error probability results significantly better than all methods previously proposed for key binding with PUFs. The uniqueness and security performance of a transform selected from the proposed set is shown to be close to optimal. An...
Self-Secured PUF: Protecting the Loop PUF by Masking
Lars Tebelmann, Jean-Luc Danger, Michael Pehl
Physical Unclonable Functions (PUFs) provide means to generate chip individual keys, especially for low-cost applications such as the Internet of Things (IoT). They are intrinsically robust against reverse engineering, and more cost-effective than non-volatile memory (NVM). For several PUF primitives, countermeasures have been proposed to mitigate side-channel weaknesses. However, most mitigation techniques require substantial design effort and/or complexity overhead, which cannot be...
Splitting the Interpose PUF: A Novel Modeling Attack Strategy
Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen, Marian Margraf, Jean-Pierre Seifert, Marten van Dijk, Ulrich Rührmair
Implementation
We demonstrate that the Interpose PUF proposed at CHES 2019, an Arbiter PUF based design for so-called Strong Physical Unclonable Functions (PUFs), can be modeled by novel machine learning strategies up to very substantial sizes and complexities. Our attacks require in the most difficult cases considerable, but realistic, numbers of CRPs, while consuming only moderate computation times, ranging from few seconds to few days. The attacks build on a new divide-and-conquer approach that allows...
Cryptanalysis of two recently proposed PUF based authentication protocols for IoT: PHEMAP and Salted PHEMAP
Morteza Adeli, Nasour Bagheri
Cryptographic protocols
Internet of Things(IoT) consists of a large number of interconnected coexist heterogeneous entities, including Radio-frequency identification(RFIDs) based devices and other sensors to detect and transfer various information such as temperature, personal health data, brightness, etc. Security, in particular, authentication, is one of the most important parts of information security infrastructure in IoT systems. Given that an IoT system has many resource-constrained devices, a goal could be...
Image PUF: A Physical Unclonable Function for Printed Electronics based on Optical Variation of Printed Inks
Ahmet Turan Erozan, Michael Hefenbrock, Michael Beigl, Jasmin Aghassi-Hagmann, Mehdi B. Tahoori
Applications
Printed Electronics (PE) has a rapidly growing market, thus, the counterfeiting/overbuilding of PE components is anticipated to grow. The common solution for the counterfeiting is Physical Unclonable Functions (PUFs). In PUFs, a unique fingerprint is extracted from (irreproducible) process variations in the production and used in the authentication of valid components. Many commonly used PUFs are electrical PUFs by leveraging the impact of process variations on electrical properties of...
TI-PUF: Toward Side-Channel Resistant Physical Unclonable Functions
Anita Aghaie, Amir Moradi
Implementation
One of the main motivations behind introducing PUFs was their ability to resist physical attacks. Among them, cloning was the major concern of related scientific literature. Several primitive PUF designs have been introduced to the community, and several machine learning attacks have been shown capable to model such constructions. Although a few works have expressed how to make use of Side-Channel Analysis (SCA) leakage of PUF constructions to significantly improve the modeling attacks,...
2019/1181
Last updated: 2020-03-05
Quantum Physical Unclonable Functions: Possibilities and Impossibilities
Myrto Arapinis, Mahshid Delavar, Mina Doosti, Elham Kashefi
Foundations
Physical Unclonable Functions (PUFs) are physical devices with unique behavior that are hard to clone. A variety of PUF schemes have been considered in theoretical studies as well as practical implementations of several security primitives such as identification and key generation. Recently, the inherent unclonability of quantum states has been exploited for defining (a partial) quantum analogue to classical PUFs (against limited adversaries). There are also a few proposals for quantum...
Short Paper: XOR Arbiter PUFs have Systematic Response Bias
Nils Wisiol, Niklas Pirnay
Applications
We demonstrate that XOR Arbiter PUFs with an even number of arbiter chains have inherently biased responses, even if all arbiter chains are perfectly unbiased. This rebukes the believe that XOR Arbiter PUFs are, like Arbiter PUFs, unbiased when ideally implemented and proves that independently manufactured Arbiter PUFs are not statistically independent.
As an immediate result of this work, we suggest to use XOR Arbiter PUFs with odd numbers of arbiter chains whenever possible. Furthermore,...
Non-Interactive Zero Knowledge Proofs in the Random Oracle Model
Vincenzo Iovino, Ivan Visconti
Public-key cryptography
The Fiat-Shamir (FS) transform is a well known and widely used technique to convert any constant-round public-coin honest-verifier zero-knowledge (HVZK) proof or argument system $CIPC=(Prov,Ver)$ in a non-interactive zero-knowledge (NIZK) argument system $NIZK=(NIZK.Prove, NIZK.Verify)$.
The FS transform is secure in the random oracle (RO) model and is extremely efficient: it adds an evaluation of the
RO for every message played by $Ver$.
While a major effort has been done to attack the...
Breaking the Lightweight Secure PUF: Understanding the Relation of Input Transformations and Machine Learning Resistance
Nils Wisiol, Georg T. Becker, Marian Margraf, Tudor A. A. Soroceanu, Johannes Tobisch, Benjamin Zengin
Applications
Physical Unclonable Functions (PUFs) and, in particular, XOR Arbiter PUFs have gained much research interest as an authentication mechanism for embedded systems.
One of the biggest problems of (strong) PUFs is their vulnerability to so called machine learning attacks.
In this paper we take a closer look at one aspect of machine learning attacks that has not yet gained the needed attention:
the generation of the sub-challenges in XOR Arbiter PUFs fed to the individual Arbiter...
Deep Learning based Model Building Attacks on Arbiter PUF Compositions
Pranesh Santikellur, Aritra Bhattacharyay, Rajat Subhra Chakraborty
Applications
Robustness to modeling attacks is an important
requirement for PUF circuits. Several reported Arbiter PUF com-
positions have resisted modeling attacks. and often require huge
computational resources for successful modeling. In this paper
we present deep feedforward neural network based modeling
attack on 64-bit and 128-bit Arbiter PUF (APUF), and several
other PUFs composed of Arbiter PUFs, namely, XOR APUF,
Lightweight Secure PUF (LSPUF), Multiplexer PUF (MPUF) and
its variants (cMPUF and...
Theoretical and Practical Approaches for Hardness Amplification of PUFs
Fatemeh Ganji, Shahin Tajik, Pascal Stauss, Jean-Pierre Seifert, Domenic Forte, Mark Tehranipoor
Foundations
The era of PUFs has been characterized by the efforts put into research and the development of PUFs that are robust against attacks, in particular, machine learning (ML) attacks. In the lack of systematic and provable methods for this purpose, we have witnessed the ever-continuing competition between PUF designers/ manufacturers, cryptanalysts, and of course, adversaries that maliciously break the security of PUFs. This is despite a series of acknowledged principles developed in cryptography...
Towards Secret-Free Security
Ulrich Rührmair
Foundations
While digital secret keys appear indispensable in
modern cryptography and security, they also routinely constitute
a main attack point of the resulting hardware systems. Some
recent approaches have tried to overcome this problem by simply
avoiding keys and secrets in vulnerable systems. To start with,
physical unclonable functions (PUFs) have demonstrated how
“classical keys”, i.e., permanently stored digital secret keys, can
be evaded, realizing security devices that might be called...
Side-Channel Analysis of the TERO PUF
Lars Tebelmann, Michael Pehl, Vincent Immler
Physical Unclonable Functions (PUFs) have the potential to provide a higher level of security for key storage than traditional Non-Volatile Memory (NVM). However, the susceptibility of the PUF primitives to non-invasive Side-Channel Analysis (SCA) is largely unexplored. While resistance to SCA was indicated for the Transient Effect Ring Oscillator (TERO) PUF, it was not backed by an actual assessment. To investigate the physical security of the TERO PUF, we first discuss and study the...
Transient Effect Ring Oscillators Leak Too
Ugo Mureddu, Brice Colombier, Nathalie Bochard, Lilian Bossuet, Viktor Fischer
Implementation
Up to now, the transient effect ring oscillator (TERO) seemed to be a better building block for PUFs than a standard ring oscillator, since it was thought to be immune to electromagnetic analysis. Here, we report for the first time that TERO PUFs are in fact vulnerable to electromagnetic analysis too. First, we propose a spectral model of a TERO cell output, showing how to fit it to experimental data obtained with the help of a spectrum analyser to recover the number of oscillations of a...
Privacy and Reader-first Authentication in Vaudenay's RFID Model with Temporary State Disclosure
Ferucio Laurentiu Tiplea, Cristian Hristea
Cryptographic protocols
Privacy and mutual authentication under corruption with temporary state disclosure are two significant requirements for real-life
applications of RFID schemes. No RFID scheme is known so far to meet these two requirements. In this paper we propose two practical RFID schemes that fill this gap. The first one achieves destructive privacy, while the second one narrow destructive privacy, in Vaudenay's model with temporary state disclosure. Both of them provide mutual (reader-first)...
Concealing Ketje: A Lightweight PUF-Based Privacy Preserving Authentication Protocol
Gerben Geltink
Cryptographic protocols
In this paper, we focus on the design of a novel authentication protocol that preserves the privacy of embedded devices. A Physically Unclonable Function (PUF) generates challenge-response pairs that form the source of authenticity between a server and multiple devices. We rely on Authenticated Encryption (AE) for confidentiality, integrity and authenticity of the messages. A challenge updating mechanism combined with an authenticate-before-identify strategy is used to provide privacy. The...
Attacking RO-PUFs with Enhanced Challenge-Response Pairs
Nils Wisiol, Marian Margraf
Secret-key cryptography
This paper studies the security of Ring Oscillator Physically Unclonable Function (PUF) with Enhanced Challenge-Response Pairs as proposed by Delavar et al. We present an attack that can predict all PUF responses after querying the PUF with n+2 attacker-chosen queries. This result renders the proposed RO-PUF with Enhanced Challenge-Response Pairs inapt for most typical PUF use cases, including but not limited to all cases where an attacker has query access.
Secure Boot and Remote Attestation in the Sanctum Processor
Ilia Lebedev, Kyle Hogan, Srinivas Devadas
Foundations
During the secure boot process for a trusted execution environment, the processor must provide a chain of certificates to the remote client demonstrating that their secure container was established as specified. This certificate chain is rooted at the hardware manufacturer who is responsible for constructing chips according to the correct specification and provisioning them with key material. We consider a semi-honest manufacturer who is assumed to construct chips correctly, but may attempt...
Efficient Erasable PUFs from Programmable Logic and Memristors
Yansong Gao, Chenglu Jin, Jeeson Kim, Hussein Nili, Xiaolin Xu, Wayne Burleson, Omid Kavehei, Marten van Dijk, Damith C. Ranasinghe, Ulrich Rührmair
Implementation
At Oakland 2013, Rührmair and van Dijk showed that many advanced PUF (Physical Unclonable Function)-based security protocols (e.g. key agreement, oblivious transfer, and bit commitment) can be vulnerable if adversaries get access to the PUF and reuse the responses used in the protocol after the protocol execution. This observation implies the necessity of erasable PUFs for realizing secure PUF-based protocols in practice. Erasable PUFs are PUFs where the responses of any single...
The Interpose PUF: Secure PUF Design against State-of-the-art Machine Learning Attacks
Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, Ulrich Rührmair, Marten van Dijk
Implementation
The design of a silicon Strong Physical Unclonable Function (PUF) that is lightweight and stable, and which possesses a rigorous security argument, has been a fundamental problem in PUF research since its very beginnings in 2002. Various effective PUF modeling attacks, for example at CCS 2010 and CHES 2015, have shown that currently, no existing silicon PUF design can meet these requirements. In this paper, we introduce the novel Interpose PUF (iPUF) design, and rigorously prove its...
2018/263
Last updated: 2018-12-01
An Efficient and Secure Attribute-Based Signcryption Scheme for Smart Grid Applications
Seyyed Mahdi Sedaghat, Mohammad Hassan Ameri, Mahshid Delavar, Javad Mohajeri, Mohammad Reza Aref
Public-key cryptography
With regards to the development of modern power systems, Smart Grid (SG) as an intelligent generation of electricity networks has been faced with a tremendous attention. Fine-grained data sharing in SG plays a vital role in efficiently managing data flow in the SG. As these data commonly contain sensitive information, design of the secure and efficient privacy-preserving schemes for such networks with plenty of resource constrained devices is one of the most controversial issues. In this...
Machine-Learning Attacks on PolyPUFs, OB-PUFs, RPUFs, LHS-PUFs, and PUF–FSMs
Jeroen Delvaux
A physically unclonable function (PUF) is a circuit of which the input–output behavior is designed to be sensitive to the random variations of its manufacturing process. This building block hence facilitates the authentication of any given device in a population of identically laid-out silicon chips, similar to the biometric authentication of a human. The focus and novelty of this work is the development of efficient impersonation attacks on the following five Arbiter PUF–based...
Secure Code Updates for Smart Embedded Devices based on PUFs
Wei Feng, Yu Qin, Shijun Zhao, Ziwen Liu, Xiaobo Chu, Dengguo Feng
Code update is a very useful tool commonly used in low-end embedded devices to improve the existing functionalities or patch discovered bugs or vulnerabilities. If the update protocol itself is not secure, it will only bring new threats to embedded systems. Thus, a secure code update mechanism is required. However, existing solutions either rely on strong security assumptions, or result in considerable storage and computation consumption, which are not practical for resource-constrained...
Self-Guarding Cryptographic Protocols against Algorithm Substitution Attacks
Marc Fischlin, Sogol Mazaheri
We put forward the notion of self-guarding cryptographic protocols as a countermeasure to algorithm substitution attacks. Such self-guarding protocols can prevent undesirable leakage by subverted algorithms if one has the guarantee that the system has been properly working in an initialization phase. Unlike detection-based solutions they thus proactively thwart attacks, and unlike reverse firewalls they do not assume an online external party. We present constructions of basic primitives for...
Why Attackers Lose: Design and Security Analysis of Arbitrarily Large XOR Arbiter PUFs
Nils Wisiol, Christoph Graebnitz, Marian Margraf, Manuel Oswald, Tudor A. A. Soroceanu, Benjamin Zengin
Secret-key cryptography
In a novel analysis, we formally prove that arbitrarily many Arbiter PUFs can be combined into a stable XOR Arbiter PUF. To the best of our knowledge, this design cannot be modeled by any known oracle access attack in polynomial time.
Using majority vote of arbiter chain responses, our analysis shows that with a polynomial number of votes, the XOR Arbiter PUF stability of almost all challenges can be boosted exponentially close to 1; that is, the stability gain through majority voting can...
Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs
Vincent Immler, Matthias Hiller, Qinzhi Liu, Andreas Lenz, Antonia Wachter-Zeh
Device-specific physical characteristics provide the foundation for PUFs, a hardware primitive for secure storage of cryptographic keys. So far, they have been implemented by either directly evaluating a binary output or by mapping outputs from a higher-order alphabet to a fixed-length bit sequence. However, the latter causes a significant bias in the derived key when combined with an equidistant quantization.
To overcome this limitation, we propose a variable-length bit mapping that...
MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks
Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, Marten van Dijk
Implementation
Silicon Physical Unclonable Functions (PUFs) have been proposed as an emerging hardware security primitive in various security applications such as device identification, authentication, and cryptographic key generation. Current so-called `strong' PUFs, which allow a large challenge response space, are compositions of Arbiter PUFs (APUFs), e.g. the $x$-XOR APUF. Wide-scale deployment of state-of-the-art compositions of APUFs, however, has stagnated due to various mathematical and physical...
A Fourier Analysis Based Attack against Physically Unclonable Functions
Fatemeh Ganji, Shahin Tajik, Jean-Pierre Seifert
Electronic payment systems have leveraged the advantages offered by the RFID technology, whose security is promised to be improved by applying the notion of Physically Unclonable Functions (PUFs). Along with the evolution of PUFs, numerous successful attacks against PUFs have been proposed in the literature. Among these are machine learning (ML) attacks, ranging from heuristic approaches to provable algorithms, that have attracted great attention. Our paper pursues this line of research by...
Robust Fuzzy Extractors and Helper Data Manipulation Attacks Revisited: Theory vs Practice
Georg T. Becker
Fuzzy extractors have been proposed in 2004 by Dodis et al. as a secure way to generate cryptographic keys from noisy sources. In recent years, fuzzy extractors have become an important building block in hardware security due to their use in secure key generation based on Physical Unclonable Functions (PUFs). Fuzzy extractors are provably secure against passive attackers. A year later Boyen et al. introduced robust fuzzy extractors which are also provably secure against active attackers,...
Security Analysis of Arbiter PUF and Its Lightweight Compositions Under Predictability Test
Phuong Ha Nguyen, Durga Prasad Sahoo, Rajat Subhra Chakraborty, Debdeep Mukhopadhyay
Applications
Unpredictability is an important security property of Physically Unclonable Function (PUF) in the context of statistical attacks, where the correlation between challenge-response pairs is explicitly exploited. In existing literature on PUFs, Hamming Distance test, denoted by $\mathrm{HDT}(t)$, was proposed to evaluate the unpredictability of PUFs, which is a simplified case of the Propagation Criterion test $\mathrm{PC}(t)$. The objective of these testing schemes is to estimate the output...
PUF+IBE: Blending Physically Unclonable Functions with Identity Based Encryption for Authentication and Key Exchange in IoTs
Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, Debashis Mahata, Mukesh Prabhu
Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of
connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an
accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques
suffer from the pressing problems of password dependency and inability to bind access requests to the...
Predictive Aging of Reliability of two Delay PUFs
Naghmeh Karimi, Jean-Luc Danger, Florent Lozac'h, Sylvain Guilley
Implementation
To protect integrated circuits against IP piracy, Physically Unclonable Functions (PUFs) are deployed.
PUFs provide a specific signature for each integrated circuit.
However, environmental variations, (e.g., temperature change), power supply noise and more influential IC aging affect the functionally of PUFs.
Thereby, it is important to evaluate aging effects as early as possible, preferentially at design time.
In this paper we investigate the effect of aging on the stability of two delay...
A Multiplexer based Arbiter PUF Composition with Enhanced Reliability and Security
Durga Prasad Sahoo, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, Phuong Ha Nguyen
Arbiter Physically Unclonable Function (APUF), while being relatively lightweight, is extremely vulnerable to modeling attacks. Hence, various compositions of APUFs such as XOR APUF and Lightweight Secure PUF have been proposed to be secure alternatives. Previous research has demonstrated that PUF compositions have two major challenges to overcome: vulnerability against modeling and statistical attacks, and lack of reliability. In this paper, we introduce a multiplexer based composition of...
Authenticated communication from Quantum Readout of PUFs
B. Skoric, P. W. H. Pinkse, A. P. Mosk
Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects.
We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this modification QR-d or, in the case of the optical-PUF implementation, QSA-d.
We discuss how QSA-d can be operated in a parallel way. We also present a protocol for authenticating quantum states.
Key Reconciliation Protocols for Error Correction of Silicon PUF Responses
Brice Colombier, Lilian Bossuet, David Hély, Viktor Fischer
Implementation
Physical Unclonable Functions (PUFs) are promising primitives for the lightweight authentication of an integrated circuit (IC). Indeed, by extracting an identifier from random process variations, they allow each instance of a design to be uniquely identified. However, the extracted identifiers are not stable enough to be used as is, and hence need to be corrected first. This is currently achieved using error-correcting codes in secure sketches, that generate helper data through a one-time...
Distance Bounding based on PUF
Mathilde Igier, Serge Vaudenay
Cryptographic protocols
Distance Bounding (DB) is designed to mitigate relay attacks. This paper provides a complete study of the DB protocol of Kleber et al. based on Physical Unclonable Functions (PUFs). We contradict the claim that it resists to Terrorist Fraud (TF). We propose some slight modifications to increase the security of the protocol and formally prove TF-resistance, as well as resistance to Distance Fraud (DF), and Man-In-the-Middle attacks (MiM) which include relay attacks.
Physical Unclonable Functions based on Temperature Compensated Ring Oscillators
Sha Tao, Elena Dubrova
Implementation
Physical unclonable functions (PUFs) are promising hardware security primitives suitable for low-cost cryptographic applications.Ring oscillator (RO) PUF is a well-received silicon PUF solution due to its ease of implementation and entropy evaluation. However, the responses of RO-PUFs are susceptible to environmental changes, in particular, to temperature variations. Additionally, a conventional RO-PUF implementation is usually more power-hungry than other PUF alternatives. This paper...
Algebraic Security Analysis of Key Generation with Physical Unclonable Functions
Matthias Hiller, Michael Pehl, Gerhard Kramer, Georg Sigl
Applications
Physical Unclonable Functions (PUFs) provide cryptographic keys for embedded systems without secure non-volatile key storage. Several error correction schemes for key generation with PUFs were introduced, analyzed and implemented over the last years. This work abstracts from the typical algorithmic level and provides an algebraic view to reveal fundamental similarities and differences in the security of these error correction schemes.
An algebraic core is introduced for key generation with...
TV-PUF : A Fast Lightweight Aging-Resistant Threshold Voltage PUF
Tanujay Saha, Vikash Sehwag
Implementation
Physical Unclonable Function (PUF) is the hardware analog
of a one-way function which can address hardware security issues such as
device authentication, generating secret keys, producing seeds for Random
Number Generators, etc. Traditional silicon PUFs are based on delay
(Ring Oscillator PUFs and Arbiter PUFs) or memory structures (e.g,
SRAM PUFs). In this paper, we propose the design of an aging resistant,
lightweight and low-power analog PUF that exploits the susceptibility of
Threshold...
Low-temperature data remanence attacks against intrinsic SRAM PUFs
Nikolaos Athanasios Anagnostopoulos, Stefan Katzenbeisser, Markus Rosenstihl, André Schaller, Sebastian Gabmeyer, Tolga Arul
In this paper, we present the first systematic investigation of data remanence effects on an intrinsic Static Random Access Memory Physical Unclonable Function (SRAM PUF) implemented on a commercial off-the-shelf (COTS) device in a temperature range between -110° C and -40° C. Although previous studies investigated data remanence in SRAMs only at temperatures above -50° C, our experimental results clearly indicate that the extended temperature region we examine has dramatic effects on the...
A PUF-based Secure Communication Protocol for IoT
URBI CHATTERJEE, RAJAT SUBHRA CHAKRABORTY, DEBDEEP MUKHOPADHYAY
Cryptographic protocols
Security features are of paramount importance for IoT, and implementations are challenging given the
resource-constrained IoT set-up. We have developed a lightweight identity-based cryptosystem suitable for
IoT, to enable secure authentication and message exchange among the devices. Our scheme employs Physically
Unclonable Function (PUF), to generate the public identity of each device, which is used as the public
key for each device for message encryption. We have provided formal proofs of...
Unconditional UC-Secure Computation with (Stronger-Malicious) PUFs
Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky, Ivan Visconti
Cryptographic protocols
Brzuska \etal. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs).
Dachman-Soled \etal. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs,
assuming such PUFs are stateless.
They also showed that unconditional oblivious transfer is impossible against an adversary that creates malicious stateful PUFs.
\begin{itemize}
\item
In this work, we...
Strong Machine Learning Attack against PUFs with No Mathematical Model
Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, Jean-Pierre Seifert
Although numerous attacks revealed the vulnerability of different PUF families to non-invasive Machine Learning (ML) attacks, the question is still open whether all PUFs might be learnable. Until now, virtually all ML attacks rely on the assumption that a mathematical model of the PUF functionality is known a priori. However, this is not always the case, and attention should be paid to this important aspect of ML attacks. This paper aims to address this issue by providing a provable...
No Place to Hide: Contactless Probing of Secret Data on FPGAs
Heiko Lohrke, Shahin Tajik, Christian Boit, Jean-Pierre Seifert
Field Programmable Gate Arrays (FPGAs) have been the target of different physical attacks in recent years.
Many different countermeasures have already been integrated into these devices to mitigate the existing vulnerabilities. However, there has not been enough attention paid to semi-invasive attacks from the IC backside due to the following reasons. First, the conventional semi-invasive attacks from the IC backside --- such as laser fault injection and photonic emission analysis --- cannot...
TV-PUF : A Fast Lightweight Analog Physically Unclonable Function
Tanujay Saha
Implementation
Physical Unclonable Function (PUF) is hardware analog of a one-way function which can address hardware security issues such as device authentication, generating secret keys, producing seeds for Random Number Generators, etc. Traditional silicon PUFs are based on delay (Ring Oscillator PUFs and Arbiter PUFs) or memory structures (like SRAM). In this paper, we propose a novel idea of a very fast, lightweight and robust analog PUF that exploits the susceptibility of Threshold Voltage...
AEP-M: Practical Anonymous E-Payment for Mobile Devices using ARM TrustZone and Divisible E-Cash (Full Version)
Bo Yang, Kang Yang, Zhenfeng Zhang, Yu Qin, Dengguo Feng
Cryptographic protocols
Electronic payment (e-payment) has been widely applied to electronic commerce and has especially attracted a large number of mobile users. However, current solutions often focus on protecting users' money security without concerning the issue of users' privacy leakage. In this paper, we propose AEP-M, a practical anonymous e-payment scheme specifically designed for mobile devices using TrustZone. On account of the limited resources on mobile devices and time constraints of electronic...
Fault Tolerant Implementations of Delay-based Physically Unclonable Functions on FPGA
Durga Prasad Sahoo, Sikhar Patranabis, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty
Implementation
Recent literature has demonstrated that the security of Physically Unclonable Function (PUF) circuits might be adversely affected by the introduction of faults. In this paper, we propose novel and efficient architectures for a variety of widely used delay-based PUFs which are robust against high precision laser fault attacks proposed by Tajik et al. in FDTC-2015. The proposed architectures can be used to detect run-time modifications in the PUF design due to fault injection. In addition, we...
An Efficient and Scalable Modeling Attack on Lightweight Secure Physically Unclonable Function
Phuong Ha Nguyen, Durga Prasad Sahoo
Applications
The Lightweight Secure Physically Unclonable Function (LSPUF) was proposed as a secure composition of Arbiter PUFs with additional XOR based input and output networks. But later, researchers proposed a Machine Learning (ML) based modeling attack on $x$-XOR LSPUF, and they also empirically showed that pure ML based modeling is not computationally scalable if the parameter $x$ of $x$-XOR LSPUF is larger than nine. Besides this pure computational attack using only challenge-response pairs...
Optimized quantization in Zero Leakage Helper Data Systems
Taras Stanko, Fitria Nur Andini, Boris Skoric
Helper Data Systems are a cryptographic primitive that allows for the reproducible extraction of secrets from noisy measurements. Redundancy data called Helper Data makes it possible to do error correction while leaking little or nothing ("Zero Leakage") about the extracted secret string.
We study the case of non-discrete measurement outcomes. In this case a quantization step is required. Recently de Groot et al described a generic method to perform the quantization in a Zero Leakage manner....
On the Security of PUF Protocols under Bad PUFs and PUFs-inside-PUFs Attacks
Ulrich Rührmair
We continue investigations on the use of so-called Strong PUFs as a cryptographic primitive in realistic attack models, in particular in the “Bad/Malicious PUF Model”. We obtain the following results:
– Bad PUFs and Simplification: As a minor contribution, we simplify a recent OT-protocol for malicious PUFs by Dachman-Soled et al. [4] from CRYPTO 2014. We can achieve the same security properties under the same assumptions, but use only one PUF instead of two.
– PUFs-inside-PUFs, Part I: We...
On Metrics to Quantify the Inter-Device Uniqueness of PUFs
Linus Feiten, Matthias Sauer, Bernd Becker
Applications
Physically Unclonable Functions (PUFs) have been an emerging topic in hardware security and trust in recent years, and many different kinds of PUFs have been presented in the literature. An important criterion is always the diversity of PUF responses for different devices, called inter-device uniqueness. A very popular uniqueness metric consists of calculating the pairwise hamming distance between the response bit-strings of all devices, assuming that all response bits are uncorrelated....
MEMS-based Gyroscopes as Physical Unclonable Functions
Oliver Willers, Christopher Huth, Jorge Guajardo, Helmut Seidel
Secret-key cryptography
We are at the dawn of a hyper connectivity age otherwise known as the Internet of Things (IoT). It is widely accepted that to be able to reap all benefits from the IoT promise, device security will be of paramount importance. A key requirement for most security solutions is the ability to provide secure cryptographic key storage in a way that will easily scale in the IoT age. In this paper, we focus on providing such a solution based on Physical Unclonable Functions (PUFs). To this end,...
Run-time Accessible DRAM PUFs in Commodity Devices
Wenjie Xiong, André Schaller, Nikolaos A. Anagnostopoulos, Muhammad Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, Jakub Szefer
Implementation
A Physically Unclonable Function (PUF) is a unique and stable physical characteristic of a piece of hardware, which emerges due to variations in the fabrication processes. Prior works have demonstrated that PUFs are a promising cryptographic primitive to enable secure key storage, hardware-based device authentication and identification. So far, most PUF constructions require addition of new hardware or FPGA implementations for their operation. Recently, intrinsic PUFs, which can be found in...
A trivial debiasing scheme for Helper Data Systems
Boris Skoric
We introduce a debiasing scheme that solves the more-noise-than-entropy problem which can occur in Helper Data Systems when the source is very biased. We perform a condensing step, similar to Index Based Syndrome coding, that reduces the size of the source space in such a way that some source entropy is lost while the noise entropy is greatly reduced.
In addition, our method allows for even more entropy extraction by means of a `spamming' technique.
Our method outperforms solutions based on...
On the Architectural Analysis of Arbiter Delay PUF Variants
DURGA PRASAD SAHOO, PHUONG HA NGUYEN, RAJAT SUBHRA CHAKRABORTY, DEBDEEP MUKHOPADHYA
The Arbiter Physically Unclonable Function (APUF) is a widely used strong delay PUF design. There are two FPGA variants of this design, namely, Programmable Delay Line APUF (PAPUF) and Double APUF (DAPUF) to mitigate the FPGA platform specific implementation issues. In this paper, we introduce the idea of Architectural Bias to compare the impact of the architecture of these APUF designs on their design bias. The biased challenge-response behavior of a delay PUF implies the non-uniform...
True Random Number Generators (TRNGs) and Physically Unclonable Functions (PUFs) are critical hardware primitives for cryptographic systems, providing randomness and device-specific security. TRNGs require complete randomness, while PUFs rely on consistent, device-unique responses. In this work, both primitives are implemented on a System-on-Chip Field-Programmable Gate Array (SoC FPGA), leveraging the integrated Phase-Locked Loops (PLLs) for robust entropy generation in PLLbased TRNGs. A...
Physically (or Physical) Unclonable Functions (PUFs) are basic and useful primitives in designing cryptographic systems. PUFs are designed to facilitate device authentication, secure boot, firmware integrity, and secure communications. To achieve these objectives, PUFs must exhibit both consistent repeatability and instance-specific randomness. The Arbiter PUF (APUF), recognized as the first silicon PUF, is capable of generating a substantial number of secret keys instantaneously based on...
This paper endeavors to securely implement a Physical Unclonable Function (PUF) for private data generation within Field-Programmable Gate Arrays (FPGAs). SRAM PUFs are commonly utilized due to their use of memory devices for generating secret data, particularly in resource constrained devices. However, their reliance on memory access poses side-channel threats such as data remanence decay and memory-based attacks, and the time required to generate secret data is significant. To address...
Physically Unclonable Functions (PUFs) have been a potent choice for enabling low-cost, secure communication. However, in most applications, one party holds the PUF, and the other securely stores the challenge-response pairs (CRPs). It does not remove the need for secure storage entirely, which is one of the goals of PUFs. This paper proposes a PUF-based construction called Harmonizing PUFs ($\textsf{H_PUF}$s), allowing two independent PUFs to generate the same outcome without storing...
With the ongoing advances in machine learning (ML), cybersecurity solutions and security primitives are becoming increasingly vulnerable to successful attacks. Strong physically unclonable functions (PUFs) are a potential solution for providing high resistance to such attacks. In this paper, we propose a generalized attack model that leverages multiple chips jointly to minimize the cloning error. Our analysis shows that the entropy rate over different chips is a relevant measure to the new...
This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong Physical Unclonable Functions (PUFs). These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial complexity analyses, and allow simple iterative design optimization. Moreover, they are computationally more efficient and far easier to...
Vehicle-to-grid (V2G) provides effective charging services, allows bidirectional energy communication between the power grid and electric vehicle (EV), and reduces environmental pollution and energy crises. Recently, Sungjin Yu et al. proposed a PUF-based, robust, and anonymous authentication and key establishment scheme for V2G networks. In this paper, we show that the proposed protocol does not provide user anonymity and is vulnerable to tracing attack. We also found their scheme is...
This paper introduces a novel approach to enhancing cryp- tographic security. It proposes the use of one-time message sharing com- bined with Physically Unclonable Functions (PUF) to securely exchange keys and generate an S-subbyte-box for encryption. This innovative tech- nique aims to elevate the security standards of cryptographic applica- tions.
Password-based authentication is an extensively used method to authenticate users. It uses cryptography to communicate the authentication process. On the contrary, the physically unclonable function (PUF)-based authentication mechanism is also gaining popularity rapidly due to its usability in IoT devices. It is a lightweight authentication mechanism that does not use cryptography protocol. PUF-based authentication mechanisms cannot authenticate users. To overcome the drawback of PUF, we...
Physically Unclonable Functions (PUFs) are being proposed as a low cost alternative to permanently store secret keys or provide device authentication without requiring non-volatile memory, large e-fuses or other dedicated processing steps. In the literature, PUFs are split into two main categories. The so-called strong PUFs are mainly used for authentication purposes, hence also called authentication PUFs. They promise to be lightweight by avoiding extensive digital post-processing and...
Recent advancements in low-cost cryptography have converged upon the use of nanoscale level structural variances as sources of entropy that is unique to each device. Consequently, such delay-based Physically Unclonable Functions or (PUFs) have gained traction for several cryptographic applications. In light of recent machine learning (ML) attacks on delay-based PUFs, the common trend among PUF designers is to either introduce non-linearity using XORs or input transformations applied on the...
The goals of cryptography are achieved using mathematically strong crypto-algorithms, which are adopted for securing data and communication. Even though the algorithms are mathematically secure, the implementation of these algorithms may be vulnerable to side-channel attacks such as timing and power analysis attacks. One of the effective countermeasures against such attacks is Threshold Implementation(TI). However, TI realization in crypto-device introduces hardware complexity, so it...
Physically Unclonable Functions~(PUFs) with large challenge space~(also called Strong PUFs) are promoted for usage in authentications and various other cryptographic and security applications. In order to qualify for these cryptographic applications, the Boolean functions realized by PUFs need to possess a high non-linearity~(NL). However, with a large challenge space~(usually $\geq 64$ bits), measuring NL by classical techniques like Walsh transformation is computationally infeasible. In...
Using a novel circuit design, we investigate if the modeling-resistance of delay-based, CMOS-compatible strong PUFs can be increased by the usage of multiple delay lines. Studying a circuit inspired by the Arbiter PUF, but using four instead of merely two delay lines, we obtain evidence showing that the usage of many delay lines does not significantly increase the security of the strong PUF circuit. Based on our findings, we suggest future research directions.
Physically Unclonable Functions (PUFs) have emerged as a viable and cost-effective method for device authentication and key generation. Recently, CMOS image sensors have been exploited as PUF for hardware fingerprinting in mobile devices. As CMOS image sensors are readily available in modern devices such as smartphones, laptops etc., it eliminates the need for additional hardware for implementing a PUF structure. In ISIC2014, an authentication protocol has been proposed to generate PUF...
The promise of scalable quantum computing is causing major upheaval in the domain of cryptography and security. In this perspective paper, we review the progress towards the realization of large-scale quantum computing. We further summarize the imminent threats towards existing cryptographic primitives. To address this challenges, there is a consolidated effort towards the standardization of new cryptographic primitives, namely post-quantum cryptography (PQC). We discuss the underlying...
Analysis of advanced Physical Unclonable Function (PUF) applications and protocols rely on assuming that a PUF behaves like a random oracle, that is, upon receiving a challenge, a uniform random response with replacement is selected, measurement noise is added, and the resulting response is returned. In order to justify such an assumption, we need to rely on digital interface computation that to some extent remains confidential -- otherwise, information about PUF challenge response pairs...
Physically Unclonable Functions~(PUFs) have been a potent choice for enabling low-cost, secure communication. However, the state-of-the-art strong PUFs generate single-bit response. So, we propose PUF-COTE: a high throughput architecture based on linear feedback shift register and a strong PUF as the ``base''-PUF. At the same time, we obfuscate the challenges to the ``base''-PUF of the final construction. We experimentally evaluate the quality of the construction by implementing it on Artix...
The cloud-based Internet of Things (IoT) creates opportunities for more direct integration of the physical world and computer-based systems, allowing advanced applications based on sensing, analyzing and controlling the physical world. IoT deployments, however, are at a particular risk of counterfeiting, through which an adversary can corrupt the entire ecosystem. Therefore, entity authentication of edge devices is considered an essential part of the security of IoT systems. A recent paper...
Interpose PUF~(iPUF) is a strong PUF construction that was shown to be vulnerable against empirical machine learning as well as PAC learning attacks. In this work, we extend the PAC Learning results of Interpose PUF to prove that the variants of iPUF are also learnable in the PAC model under the Linear Threshold Function representation class.
Authentication constitutes the foundation and vertebrae of all security properties. It is the procedure in which communicating parties prove their identities to each other, and generally establish and derive secret keys to enforce other services, such as confidentiality, data integrity, non-repudiation, and availability. PUFs (Physical Unclonable Functions) has been the subject of many subsequent publications on lightweight, lowcost, and secure-by-design authentication protocols. This has...
Arbiter based Physical Unclonable Function (sometimes called Physically Unclonable Function, or in short PUF) is a hardware based pseudorandom bit generator. The pseudorandomness in the output bits depends on device specific parameters. For example, based on the delay parameters, an $n$-length Arbiter PUF can be considered as an n-variable Boolean function. We note that the random variation of the delay parameters cannot exhaust all the Boolean functions and the class is significantly...
Physically Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are two highly useful hardware primitives to build up the root-of-trust for an embedded device. PUFs are designed to offer repetitive and instance-specific randomness, whereas TRNGs are expected to be invariably random. In this paper, we present a dual-mode PUF-TRNG design that utilises two different hardware-intrinsic properties, i.e. oscillation frequency of the Transition Effect Ring Oscillator (TERO) cell...
We present the LP-PUF, a novel, Arbiter PUF-based, CMOS-compatible strong PUF design. We explain the motivation behind the design choices for LP-PUF and show evaluation results to demonstrate that LP-PUF has good uniqueness, low bias, and fair bit sensitivity and reliability values. Furthermore, based on analyses and discussion of the LR and splitting attacks, the reliability attacks, and MLP attack, we argue that the LP-PUF has potential to be secure against known PUF modeling attacks,...
Due to the heterogeneity and the particular security requirements of IoT (Internet of Things), developing secure, low-cost, and lightweight authentication protocols has become a serious challenge. This has excited the research community to design and develop new authentication protocols that meet IoT requirements. An interesting hardware technology, called PUFs (Physical Unclonable Functions), has been the subject of many subsequent publications on lightweight, low-cost, and secure-by-design...
Physical Unclonable Functions (PUFs) have been increasingly used as an alternative to non-volatile memory for the storage of cryptographic secrets. Research on side channel and fault attacks with the goal of extracting these secrets has begun to gain interest but no fault injection attack targeting the necessary error correction within a PUF device has been shown so far. This work demonstrates one such attack on a hardware fuzzy commitment scheme implementation and thus shows a new potential...
To compensate for the poor reliability of Physical Unclonable Function (PUF) primitives, some low complexity solutions not requiring error-correcting codes (ECC) have been proposed. One simple method is to discard less reliable bits, which are indicated in the helper data stored inside the PUF. To avoid discarding bits, the Two-metric Helper Data (TMH) method, which particularly applies to oscillation-based PUFs, allows to keep all bits by using different metrics when deriving the PUF...
In this work, we prove that Multiplexer PUF~(MPUF) and $S_N$-PUF are learnable in the PAC model. First, we show that both the designs can be represented as a function of Linear Threshold Functions. We show that the noise sensitivity of $(n,k)$-MPUF and $S_N$-PUF can be bounded by $O(2^{k} \sqrt{\epsilon})$ and $O(N\sqrt{\epsilon})$ respectively. Finally, we show that as a result of bounded noise sensitivity, both the designs can be accurately approximated using low degree algorithm. Also,...
We provide a new remote attestation scheme for secure processor technology, which is secure in the presence of an All Digital State Observing (ADSO) adversary. To accomplish this, we obfuscate session signing keys using a silicon Physical Unclonable Function (PUF) with an extended interface that combines the LPN-PUF concept with a repetition code for small failure probabilities, and we introduce a new signature scheme that only needs a message dependent subset of a session signing key for...
By revisiting, improving, and extending recent neural-network based modeling attacks on XOR Arbiter PUFs from the literature, we show that XOR Arbiter PUFs, (XOR) Feed-Forward Arbiter PUFs, and Interpose PUFs can be attacked faster, up to larger security parameters, and with fewer challenge-response pairs than previously known both in simulation and in silicon data. To support our claim, we discuss the differences and similarities of recently proposed modeling attacks and offer a fair...
The developments in the areas of strong Physical Unclonable Functions (PUFs) predicate an ongoing struggle between designers and attackers. Such a combat motivated the atmosphere of open research, hence enhancing PUF designs in the presence of Machine Learning (ML) attacks. As an example of this controversy, at CHES 2019, a novel delay-based PUF (iPUF) has been introduced and claimed to be resistant against various ML and reliability attacks. At CHES 2020, a new divide-and-conquer modeling...
Recently, a light-weight authenticated key-exchange (AKE) scheme has been proposed. The scheme provides mutual authentication. It is asymmetric in nature by delegating complex cryptographic operations to resource-equipped servers, and carefully managing the workload on resource-constrained Smart meter nodes by using Physically Unclonable Functions. The prototype Smart meter built using commercial-off-the-shelf products is enabled with a low-cost countermeasure against load-modification...
While numerous physically unclonable functions (PUFs) were proposed in recent years, the conventional PUF-based authentication model is centralized by the data of challenge-response pairs (CRPs), particularly when $n$-party authentication is required. In this work, we propose a novel concept of clonable PUF (CPUF), wherein two or more PUFs having equivalent responses are manufactured to facilitate decentralized authentication. By design, cloning is only possible in the fabrication period...
This thesis addresses security and privacy problems for digital devices and biometrics, where a secret key is generated for authentication, identification, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices. A low-complexity transform-coding algorithm is developed to make the information-theoretic analysis tractable and motivate a noisy (hidden) PUF source model. The optimal trade-offs between the secret-key,...
Everlasting security models the setting where hardness assumptions hold during the execution of a protocol but may get broken in the future. Due to the strength of this adversarial model, achieving any meaningful security guarantees for composable protocols is impossible without relying on hardware assumptions (Müller-Quade and Unruh, JoC'10). For this reason, a rich line of research has tried to leverage physical assumptions to construct well-known everlasting cryptographic primitives, such...
We address security and privacy problems for digital devices and biometrics from an information-theoretic optimality perspective, where a secret key is generated for authentication, identification, message encryption/decryption, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices and this review gives the most relevant summary for information theorists, coding theorists, and signal processing community members who are...
Physically unclonable functions (PUFs) are gaining attention as a promising cryptographic technique, with the main applications including challenge-response authentication and key generation (key storage). When a PUF is applied to these applications, min-entropy estimation is essential. Min-entropy is a measure of the lower bound of the unpredictability of PUF responses. Using the test suite of the National Institute of Standards and Technology (NIST) specification (SP) 800-90B is currently...
In this paper we show that deep learning can be used to identify the shape of power traces corresponding to the responses of a protected arbiter PUF implemented in FPGAs. To achieve that, we combine power analysis with bitstream modification. We train a CNN classifier on two 28nm XC7 FPGAs implementing 128-stage arbiter PUFs and then classify the responses of PUFs from two other FPGAs. We demonstrate that it is possible to reduce the number of traces required for a successful attack to a...
Strong Physical Unclonable Functions (PUFs), as a promising security primitive, are supposed to be a lightweight alternative to classical cryptography for purposes such as device authentication. Most of the proposed candidates, however, have been plagued by machine-learning attacks breaking their security claims. The Interpose PUF (iPUF), which has been introduced at CHES 2019, was explicitly designed with state-of-the-art machine-learning attacks in mind and is supposed to be impossible to...
In recent years, the conventional power grid system has been streamlined towards Smart grid infrastructure that empowers two-way communication between the consumers and the utility providers. This however also makes the grid more susceptible towards faults as well as physical and cyber attacks. In this work, we propose a Physically Unclonable Function (PUF) and Blockchain based detection and prevention mechanism to secure the Smart grid system against such faults and adversarial threats. In...
Physical Unclonable Functions (PUFs) are used in various key-generation schemes and protocols. Such schemes are deemed to be secure even for PUFs with challenge-response behavior, as long as no responses and no reliability information about the PUF are exposed. This work, however, reveals a pitfall in these constructions: When using state-of-the-art helper data algorithms to correct noisy PUF responses, an attacker can exploit the publicly accessible helper data and challenges. We show that...
Secure Elements (SEs) are hardware trust anchors which provide cryptographic services including secure storage of secret keys and certificates. In long-living devices certain cryptographic functions might get insecure over time, e.g. new implementation attacks or bugs are discovered, and might require to be updated. On FPGAs, partial reconfiguration (PR) offers the opportunity to overcome this issue by replacing buggy or outdated hardware on the fly. This work provides an architecture for an...
Physically unclonable function (PUF) is a technology to generate a device-unique identifier using process variation. PUF enables a cryptographic key that appears only when the chip is active, providing an efficient countermeasure against reverse-engineering attacks. In this paper, we explore the data conversion that digitizes a physical quantity representing PUF’s uniqueness into a numerical value as a new attack surface. We focus on time-to-digital converter (TDC) that converts time...
In this work, we prove that Interpose PUF is learnable in the PAC model. First, we show that Interpose PUF can be approximated by a Linear Threshold Function~(LTF), assuming the interpose bit to be random. We translate the randomness in the interpose bit to classification noise of the hypothesis. Using classification noise model, we prove that the resultant LTF can be learned with number of labelled examples~(challenge response pairs) polynomial in the number of stages and PAC model parameters.
Noisy measurements of a physical unclonable function (PUF) are used to store secret keys with reliability, security, privacy, and complexity constraints. A new set of low-complexity and orthogonal transforms with no multiplication is proposed to obtain bit-error probability results significantly better than all methods previously proposed for key binding with PUFs. The uniqueness and security performance of a transform selected from the proposed set is shown to be close to optimal. An...
Physical Unclonable Functions (PUFs) provide means to generate chip individual keys, especially for low-cost applications such as the Internet of Things (IoT). They are intrinsically robust against reverse engineering, and more cost-effective than non-volatile memory (NVM). For several PUF primitives, countermeasures have been proposed to mitigate side-channel weaknesses. However, most mitigation techniques require substantial design effort and/or complexity overhead, which cannot be...
We demonstrate that the Interpose PUF proposed at CHES 2019, an Arbiter PUF based design for so-called Strong Physical Unclonable Functions (PUFs), can be modeled by novel machine learning strategies up to very substantial sizes and complexities. Our attacks require in the most difficult cases considerable, but realistic, numbers of CRPs, while consuming only moderate computation times, ranging from few seconds to few days. The attacks build on a new divide-and-conquer approach that allows...
Internet of Things(IoT) consists of a large number of interconnected coexist heterogeneous entities, including Radio-frequency identification(RFIDs) based devices and other sensors to detect and transfer various information such as temperature, personal health data, brightness, etc. Security, in particular, authentication, is one of the most important parts of information security infrastructure in IoT systems. Given that an IoT system has many resource-constrained devices, a goal could be...
Printed Electronics (PE) has a rapidly growing market, thus, the counterfeiting/overbuilding of PE components is anticipated to grow. The common solution for the counterfeiting is Physical Unclonable Functions (PUFs). In PUFs, a unique fingerprint is extracted from (irreproducible) process variations in the production and used in the authentication of valid components. Many commonly used PUFs are electrical PUFs by leveraging the impact of process variations on electrical properties of...
One of the main motivations behind introducing PUFs was their ability to resist physical attacks. Among them, cloning was the major concern of related scientific literature. Several primitive PUF designs have been introduced to the community, and several machine learning attacks have been shown capable to model such constructions. Although a few works have expressed how to make use of Side-Channel Analysis (SCA) leakage of PUF constructions to significantly improve the modeling attacks,...
Physical Unclonable Functions (PUFs) are physical devices with unique behavior that are hard to clone. A variety of PUF schemes have been considered in theoretical studies as well as practical implementations of several security primitives such as identification and key generation. Recently, the inherent unclonability of quantum states has been exploited for defining (a partial) quantum analogue to classical PUFs (against limited adversaries). There are also a few proposals for quantum...
We demonstrate that XOR Arbiter PUFs with an even number of arbiter chains have inherently biased responses, even if all arbiter chains are perfectly unbiased. This rebukes the believe that XOR Arbiter PUFs are, like Arbiter PUFs, unbiased when ideally implemented and proves that independently manufactured Arbiter PUFs are not statistically independent. As an immediate result of this work, we suggest to use XOR Arbiter PUFs with odd numbers of arbiter chains whenever possible. Furthermore,...
The Fiat-Shamir (FS) transform is a well known and widely used technique to convert any constant-round public-coin honest-verifier zero-knowledge (HVZK) proof or argument system $CIPC=(Prov,Ver)$ in a non-interactive zero-knowledge (NIZK) argument system $NIZK=(NIZK.Prove, NIZK.Verify)$. The FS transform is secure in the random oracle (RO) model and is extremely efficient: it adds an evaluation of the RO for every message played by $Ver$. While a major effort has been done to attack the...
Physical Unclonable Functions (PUFs) and, in particular, XOR Arbiter PUFs have gained much research interest as an authentication mechanism for embedded systems. One of the biggest problems of (strong) PUFs is their vulnerability to so called machine learning attacks. In this paper we take a closer look at one aspect of machine learning attacks that has not yet gained the needed attention: the generation of the sub-challenges in XOR Arbiter PUFs fed to the individual Arbiter...
Robustness to modeling attacks is an important requirement for PUF circuits. Several reported Arbiter PUF com- positions have resisted modeling attacks. and often require huge computational resources for successful modeling. In this paper we present deep feedforward neural network based modeling attack on 64-bit and 128-bit Arbiter PUF (APUF), and several other PUFs composed of Arbiter PUFs, namely, XOR APUF, Lightweight Secure PUF (LSPUF), Multiplexer PUF (MPUF) and its variants (cMPUF and...
The era of PUFs has been characterized by the efforts put into research and the development of PUFs that are robust against attacks, in particular, machine learning (ML) attacks. In the lack of systematic and provable methods for this purpose, we have witnessed the ever-continuing competition between PUF designers/ manufacturers, cryptanalysts, and of course, adversaries that maliciously break the security of PUFs. This is despite a series of acknowledged principles developed in cryptography...
While digital secret keys appear indispensable in modern cryptography and security, they also routinely constitute a main attack point of the resulting hardware systems. Some recent approaches have tried to overcome this problem by simply avoiding keys and secrets in vulnerable systems. To start with, physical unclonable functions (PUFs) have demonstrated how “classical keys”, i.e., permanently stored digital secret keys, can be evaded, realizing security devices that might be called...
Physical Unclonable Functions (PUFs) have the potential to provide a higher level of security for key storage than traditional Non-Volatile Memory (NVM). However, the susceptibility of the PUF primitives to non-invasive Side-Channel Analysis (SCA) is largely unexplored. While resistance to SCA was indicated for the Transient Effect Ring Oscillator (TERO) PUF, it was not backed by an actual assessment. To investigate the physical security of the TERO PUF, we first discuss and study the...
Up to now, the transient effect ring oscillator (TERO) seemed to be a better building block for PUFs than a standard ring oscillator, since it was thought to be immune to electromagnetic analysis. Here, we report for the first time that TERO PUFs are in fact vulnerable to electromagnetic analysis too. First, we propose a spectral model of a TERO cell output, showing how to fit it to experimental data obtained with the help of a spectrum analyser to recover the number of oscillations of a...
Privacy and mutual authentication under corruption with temporary state disclosure are two significant requirements for real-life applications of RFID schemes. No RFID scheme is known so far to meet these two requirements. In this paper we propose two practical RFID schemes that fill this gap. The first one achieves destructive privacy, while the second one narrow destructive privacy, in Vaudenay's model with temporary state disclosure. Both of them provide mutual (reader-first)...
In this paper, we focus on the design of a novel authentication protocol that preserves the privacy of embedded devices. A Physically Unclonable Function (PUF) generates challenge-response pairs that form the source of authenticity between a server and multiple devices. We rely on Authenticated Encryption (AE) for confidentiality, integrity and authenticity of the messages. A challenge updating mechanism combined with an authenticate-before-identify strategy is used to provide privacy. The...
This paper studies the security of Ring Oscillator Physically Unclonable Function (PUF) with Enhanced Challenge-Response Pairs as proposed by Delavar et al. We present an attack that can predict all PUF responses after querying the PUF with n+2 attacker-chosen queries. This result renders the proposed RO-PUF with Enhanced Challenge-Response Pairs inapt for most typical PUF use cases, including but not limited to all cases where an attacker has query access.
During the secure boot process for a trusted execution environment, the processor must provide a chain of certificates to the remote client demonstrating that their secure container was established as specified. This certificate chain is rooted at the hardware manufacturer who is responsible for constructing chips according to the correct specification and provisioning them with key material. We consider a semi-honest manufacturer who is assumed to construct chips correctly, but may attempt...
At Oakland 2013, Rührmair and van Dijk showed that many advanced PUF (Physical Unclonable Function)-based security protocols (e.g. key agreement, oblivious transfer, and bit commitment) can be vulnerable if adversaries get access to the PUF and reuse the responses used in the protocol after the protocol execution. This observation implies the necessity of erasable PUFs for realizing secure PUF-based protocols in practice. Erasable PUFs are PUFs where the responses of any single...
The design of a silicon Strong Physical Unclonable Function (PUF) that is lightweight and stable, and which possesses a rigorous security argument, has been a fundamental problem in PUF research since its very beginnings in 2002. Various effective PUF modeling attacks, for example at CCS 2010 and CHES 2015, have shown that currently, no existing silicon PUF design can meet these requirements. In this paper, we introduce the novel Interpose PUF (iPUF) design, and rigorously prove its...
With regards to the development of modern power systems, Smart Grid (SG) as an intelligent generation of electricity networks has been faced with a tremendous attention. Fine-grained data sharing in SG plays a vital role in efficiently managing data flow in the SG. As these data commonly contain sensitive information, design of the secure and efficient privacy-preserving schemes for such networks with plenty of resource constrained devices is one of the most controversial issues. In this...
A physically unclonable function (PUF) is a circuit of which the input–output behavior is designed to be sensitive to the random variations of its manufacturing process. This building block hence facilitates the authentication of any given device in a population of identically laid-out silicon chips, similar to the biometric authentication of a human. The focus and novelty of this work is the development of efficient impersonation attacks on the following five Arbiter PUF–based...
Code update is a very useful tool commonly used in low-end embedded devices to improve the existing functionalities or patch discovered bugs or vulnerabilities. If the update protocol itself is not secure, it will only bring new threats to embedded systems. Thus, a secure code update mechanism is required. However, existing solutions either rely on strong security assumptions, or result in considerable storage and computation consumption, which are not practical for resource-constrained...
We put forward the notion of self-guarding cryptographic protocols as a countermeasure to algorithm substitution attacks. Such self-guarding protocols can prevent undesirable leakage by subverted algorithms if one has the guarantee that the system has been properly working in an initialization phase. Unlike detection-based solutions they thus proactively thwart attacks, and unlike reverse firewalls they do not assume an online external party. We present constructions of basic primitives for...
In a novel analysis, we formally prove that arbitrarily many Arbiter PUFs can be combined into a stable XOR Arbiter PUF. To the best of our knowledge, this design cannot be modeled by any known oracle access attack in polynomial time. Using majority vote of arbiter chain responses, our analysis shows that with a polynomial number of votes, the XOR Arbiter PUF stability of almost all challenges can be boosted exponentially close to 1; that is, the stability gain through majority voting can...
Device-specific physical characteristics provide the foundation for PUFs, a hardware primitive for secure storage of cryptographic keys. So far, they have been implemented by either directly evaluating a binary output or by mapping outputs from a higher-order alphabet to a fixed-length bit sequence. However, the latter causes a significant bias in the derived key when combined with an equidistant quantization. To overcome this limitation, we propose a variable-length bit mapping that...
Silicon Physical Unclonable Functions (PUFs) have been proposed as an emerging hardware security primitive in various security applications such as device identification, authentication, and cryptographic key generation. Current so-called `strong' PUFs, which allow a large challenge response space, are compositions of Arbiter PUFs (APUFs), e.g. the $x$-XOR APUF. Wide-scale deployment of state-of-the-art compositions of APUFs, however, has stagnated due to various mathematical and physical...
Electronic payment systems have leveraged the advantages offered by the RFID technology, whose security is promised to be improved by applying the notion of Physically Unclonable Functions (PUFs). Along with the evolution of PUFs, numerous successful attacks against PUFs have been proposed in the literature. Among these are machine learning (ML) attacks, ranging from heuristic approaches to provable algorithms, that have attracted great attention. Our paper pursues this line of research by...
Fuzzy extractors have been proposed in 2004 by Dodis et al. as a secure way to generate cryptographic keys from noisy sources. In recent years, fuzzy extractors have become an important building block in hardware security due to their use in secure key generation based on Physical Unclonable Functions (PUFs). Fuzzy extractors are provably secure against passive attackers. A year later Boyen et al. introduced robust fuzzy extractors which are also provably secure against active attackers,...
Unpredictability is an important security property of Physically Unclonable Function (PUF) in the context of statistical attacks, where the correlation between challenge-response pairs is explicitly exploited. In existing literature on PUFs, Hamming Distance test, denoted by $\mathrm{HDT}(t)$, was proposed to evaluate the unpredictability of PUFs, which is a simplified case of the Propagation Criterion test $\mathrm{PC}(t)$. The objective of these testing schemes is to estimate the output...
Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques suffer from the pressing problems of password dependency and inability to bind access requests to the...
To protect integrated circuits against IP piracy, Physically Unclonable Functions (PUFs) are deployed. PUFs provide a specific signature for each integrated circuit. However, environmental variations, (e.g., temperature change), power supply noise and more influential IC aging affect the functionally of PUFs. Thereby, it is important to evaluate aging effects as early as possible, preferentially at design time. In this paper we investigate the effect of aging on the stability of two delay...
Arbiter Physically Unclonable Function (APUF), while being relatively lightweight, is extremely vulnerable to modeling attacks. Hence, various compositions of APUFs such as XOR APUF and Lightweight Secure PUF have been proposed to be secure alternatives. Previous research has demonstrated that PUF compositions have two major challenges to overcome: vulnerability against modeling and statistical attacks, and lack of reliability. In this paper, we introduce a multiplexer based composition of...
Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this modification QR-d or, in the case of the optical-PUF implementation, QSA-d. We discuss how QSA-d can be operated in a parallel way. We also present a protocol for authenticating quantum states.
Physical Unclonable Functions (PUFs) are promising primitives for the lightweight authentication of an integrated circuit (IC). Indeed, by extracting an identifier from random process variations, they allow each instance of a design to be uniquely identified. However, the extracted identifiers are not stable enough to be used as is, and hence need to be corrected first. This is currently achieved using error-correcting codes in secure sketches, that generate helper data through a one-time...
Distance Bounding (DB) is designed to mitigate relay attacks. This paper provides a complete study of the DB protocol of Kleber et al. based on Physical Unclonable Functions (PUFs). We contradict the claim that it resists to Terrorist Fraud (TF). We propose some slight modifications to increase the security of the protocol and formally prove TF-resistance, as well as resistance to Distance Fraud (DF), and Man-In-the-Middle attacks (MiM) which include relay attacks.
Physical unclonable functions (PUFs) are promising hardware security primitives suitable for low-cost cryptographic applications.Ring oscillator (RO) PUF is a well-received silicon PUF solution due to its ease of implementation and entropy evaluation. However, the responses of RO-PUFs are susceptible to environmental changes, in particular, to temperature variations. Additionally, a conventional RO-PUF implementation is usually more power-hungry than other PUF alternatives. This paper...
Physical Unclonable Functions (PUFs) provide cryptographic keys for embedded systems without secure non-volatile key storage. Several error correction schemes for key generation with PUFs were introduced, analyzed and implemented over the last years. This work abstracts from the typical algorithmic level and provides an algebraic view to reveal fundamental similarities and differences in the security of these error correction schemes. An algebraic core is introduced for key generation with...
Physical Unclonable Function (PUF) is the hardware analog of a one-way function which can address hardware security issues such as device authentication, generating secret keys, producing seeds for Random Number Generators, etc. Traditional silicon PUFs are based on delay (Ring Oscillator PUFs and Arbiter PUFs) or memory structures (e.g, SRAM PUFs). In this paper, we propose the design of an aging resistant, lightweight and low-power analog PUF that exploits the susceptibility of Threshold...
In this paper, we present the first systematic investigation of data remanence effects on an intrinsic Static Random Access Memory Physical Unclonable Function (SRAM PUF) implemented on a commercial off-the-shelf (COTS) device in a temperature range between -110° C and -40° C. Although previous studies investigated data remanence in SRAMs only at temperatures above -50° C, our experimental results clearly indicate that the extended temperature region we examine has dramatic effects on the...
Security features are of paramount importance for IoT, and implementations are challenging given the resource-constrained IoT set-up. We have developed a lightweight identity-based cryptosystem suitable for IoT, to enable secure authentication and message exchange among the devices. Our scheme employs Physically Unclonable Function (PUF), to generate the public identity of each device, which is used as the public key for each device for message encryption. We have provided formal proofs of...
Brzuska \etal. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled \etal. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossible against an adversary that creates malicious stateful PUFs. \begin{itemize} \item In this work, we...
Although numerous attacks revealed the vulnerability of different PUF families to non-invasive Machine Learning (ML) attacks, the question is still open whether all PUFs might be learnable. Until now, virtually all ML attacks rely on the assumption that a mathematical model of the PUF functionality is known a priori. However, this is not always the case, and attention should be paid to this important aspect of ML attacks. This paper aims to address this issue by providing a provable...
Field Programmable Gate Arrays (FPGAs) have been the target of different physical attacks in recent years. Many different countermeasures have already been integrated into these devices to mitigate the existing vulnerabilities. However, there has not been enough attention paid to semi-invasive attacks from the IC backside due to the following reasons. First, the conventional semi-invasive attacks from the IC backside --- such as laser fault injection and photonic emission analysis --- cannot...
Physical Unclonable Function (PUF) is hardware analog of a one-way function which can address hardware security issues such as device authentication, generating secret keys, producing seeds for Random Number Generators, etc. Traditional silicon PUFs are based on delay (Ring Oscillator PUFs and Arbiter PUFs) or memory structures (like SRAM). In this paper, we propose a novel idea of a very fast, lightweight and robust analog PUF that exploits the susceptibility of Threshold Voltage...
Electronic payment (e-payment) has been widely applied to electronic commerce and has especially attracted a large number of mobile users. However, current solutions often focus on protecting users' money security without concerning the issue of users' privacy leakage. In this paper, we propose AEP-M, a practical anonymous e-payment scheme specifically designed for mobile devices using TrustZone. On account of the limited resources on mobile devices and time constraints of electronic...
Recent literature has demonstrated that the security of Physically Unclonable Function (PUF) circuits might be adversely affected by the introduction of faults. In this paper, we propose novel and efficient architectures for a variety of widely used delay-based PUFs which are robust against high precision laser fault attacks proposed by Tajik et al. in FDTC-2015. The proposed architectures can be used to detect run-time modifications in the PUF design due to fault injection. In addition, we...
The Lightweight Secure Physically Unclonable Function (LSPUF) was proposed as a secure composition of Arbiter PUFs with additional XOR based input and output networks. But later, researchers proposed a Machine Learning (ML) based modeling attack on $x$-XOR LSPUF, and they also empirically showed that pure ML based modeling is not computationally scalable if the parameter $x$ of $x$-XOR LSPUF is larger than nine. Besides this pure computational attack using only challenge-response pairs...
Helper Data Systems are a cryptographic primitive that allows for the reproducible extraction of secrets from noisy measurements. Redundancy data called Helper Data makes it possible to do error correction while leaking little or nothing ("Zero Leakage") about the extracted secret string. We study the case of non-discrete measurement outcomes. In this case a quantization step is required. Recently de Groot et al described a generic method to perform the quantization in a Zero Leakage manner....
We continue investigations on the use of so-called Strong PUFs as a cryptographic primitive in realistic attack models, in particular in the “Bad/Malicious PUF Model”. We obtain the following results: – Bad PUFs and Simplification: As a minor contribution, we simplify a recent OT-protocol for malicious PUFs by Dachman-Soled et al. [4] from CRYPTO 2014. We can achieve the same security properties under the same assumptions, but use only one PUF instead of two. – PUFs-inside-PUFs, Part I: We...
Physically Unclonable Functions (PUFs) have been an emerging topic in hardware security and trust in recent years, and many different kinds of PUFs have been presented in the literature. An important criterion is always the diversity of PUF responses for different devices, called inter-device uniqueness. A very popular uniqueness metric consists of calculating the pairwise hamming distance between the response bit-strings of all devices, assuming that all response bits are uncorrelated....
We are at the dawn of a hyper connectivity age otherwise known as the Internet of Things (IoT). It is widely accepted that to be able to reap all benefits from the IoT promise, device security will be of paramount importance. A key requirement for most security solutions is the ability to provide secure cryptographic key storage in a way that will easily scale in the IoT age. In this paper, we focus on providing such a solution based on Physical Unclonable Functions (PUFs). To this end,...
A Physically Unclonable Function (PUF) is a unique and stable physical characteristic of a piece of hardware, which emerges due to variations in the fabrication processes. Prior works have demonstrated that PUFs are a promising cryptographic primitive to enable secure key storage, hardware-based device authentication and identification. So far, most PUF constructions require addition of new hardware or FPGA implementations for their operation. Recently, intrinsic PUFs, which can be found in...
We introduce a debiasing scheme that solves the more-noise-than-entropy problem which can occur in Helper Data Systems when the source is very biased. We perform a condensing step, similar to Index Based Syndrome coding, that reduces the size of the source space in such a way that some source entropy is lost while the noise entropy is greatly reduced. In addition, our method allows for even more entropy extraction by means of a `spamming' technique. Our method outperforms solutions based on...
The Arbiter Physically Unclonable Function (APUF) is a widely used strong delay PUF design. There are two FPGA variants of this design, namely, Programmable Delay Line APUF (PAPUF) and Double APUF (DAPUF) to mitigate the FPGA platform specific implementation issues. In this paper, we introduce the idea of Architectural Bias to compare the impact of the architecture of these APUF designs on their design bias. The biased challenge-response behavior of a delay PUF implies the non-uniform...