Aller au contenu

Matrice de Pascal

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, plus particulièrement en algèbre linéaire et en combinatoire, les matrices de Pascal sont des matrices faisant intervenir le triangle de Pascal sous diverses formes.

Définitions

[modifier | modifier le code]

Matrices de Pascal triangulaires

[modifier | modifier le code]

La matrice de Pascal triangulaire supérieure T est la matrice infinie à coefficients entiers indexée sur définie par , avec la convention si .

Tronquée à l'ordre n on obtient une matrice à n+1 lignes et n+1 colonnes ; par exemple : .

La transposée U de la matrice T est la matrice de Pascal triangulaire inférieure définie par . Elle présente la forme habituelle du triangle de Pascal. Par exemple : .

Matrice de Pascal symétrique

[modifier | modifier le code]

Le produit UT donne une matrice symétrique S définie par [1]. Elle présente le triangle de Pascal habituel tourné de 45° ; par exemple

Ceci vient de la formule de convolution pour les coefficients binomiaux, en effet :

.

Interprétation comme matrice d'un endomorphisme polynomial

[modifier | modifier le code]

La matrice T est la matrice relative à la base canonique de l'endomorphisme de qui à P associe P(X + 1).

Ceci vient de la formule du binôme. En effet

.

Calcul de la matrice de Pascal triangulaire comme exponentielle de la matrice de la dérivation

[modifier | modifier le code]

La formule de Taylor appliquée aux polynômes permet d'écrire ; on peut donc écrire l'endomorphisme sous la forme est l'endomorphisme de dérivation. Si on appelle D la matrice canonique de , on obtient qui n'est autre que l'exponentielle de la matrice D.

Cette matrice D, définie par si , sinon, est la matrice triangulaire supérieure stricte dont la sur-diagonale contient .

Sa transposée est la matrice triangulaire inférieure stricte dont la sous-diagonale contient .

En passant aux matrices tronquées, on obtient et .

Par exemple pour n = 4, on obtient : donc[1] .

Propriétés

[modifier | modifier le code]

Puissances entières des matrices de Pascal triangulaires

[modifier | modifier le code]

Comme , on a pour tout entier m. On en déduit directement et .

Par exemple : .

Inverses des matrices de Pascal

[modifier | modifier le code]

Les trois matrices ont pour inverses des matrices où les coefficients de la matrice de départ ont été changés de signe "en damier".

Plus précisément et de même pour .

Par exemple :

Déterminant des matrices de Pascal finies

[modifier | modifier le code]

Les deux matrices triangulaires sont évidemment de déterminant 1, et comme , la matrice est aussi de déterminant 1.

Par exemple,

Référence

[modifier | modifier le code]
  1. a et b (en) Alan Edelman et Gilbert Strang, « Pascal's matrices », American Mathematical Monthly, vol. 111, no 3,‎ , p. 361-385 (DOI 10.2307/4145127, lire en ligne).

Articles connexes

[modifier | modifier le code]

Lien externe

[modifier | modifier le code]

(en) Eric W. Weisstein, « Pascal Matrix », sur MathWorld