Skip to content

NirantK/rag-to-riches

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 RAG to Riches

A comprehensive course on building production-ready RAG (Retrieval Augmented Generation) systems

Course Link Website

This repository contains all the code and datasets used in the Search for RAG course. Guest speakers are encouraged to contribute their code, notebooks, and datasets by raising a PR to the respective folders.

📚 Course Curriculum

Module 1: Foundations of RAG

  • 01 RAG Evals 🔍

    • Understanding RAG metrics and evaluation frameworks
    • Setting up evaluation pipelines
    • Best practices for RAG testing
  • 02 Query Understanding 💭

    • Query analysis techniques
    • Query expansion and reformulation
    • Handling different query types and intents
  • 03 Jerry Liu 🏗️ Guest Lecture

    • Hybrid search approaches
    • Multi-stage retrieval
    • Custom retrievers and rankers

Module 2: Advanced RAG Techniques

  • 04 OferGuest Lecture

    • Performance optimization strategies
    • Caching and indexing techniques
    • Scaling RAG systems
  • 05 Automatic Prompting 🤖

    • Dynamic prompt generation
    • Prompt optimization techniques
    • Automated prompt testing
  • 06 Working with Complex Docs 📄

    • Handling structured and unstructured documents
    • Document chunking strategies
    • Multi-modal document processing

Module 3: Industry Applications

  • 07 Aditya Gushwork 🏢 Guest Lecture

    • Enterprise-grade RAG implementations
    • Security and compliance considerations
    • Integration patterns
  • 08 John Gilhuly 🚀 Guest Lecture

    • Deployment strategies
    • Monitoring and observability
    • Production best practices

Module 4: Advanced Topics

  • 09 Neural IR 🧠

    • Neural search architectures
    • Dense retrievers
    • Cross-encoders and bi-encoders
  • 10 Testset Generation 🧪

    • Synthetic data generation
    • Test set validation
    • Quality assurance techniques
  • 11 Embedding Models 🔤

    • Understanding embedding spaces
    • Model selection and fine-tuning
    • Multi-modal embeddings

Module 5: Optimization and Tricks

  • 12 Vectorsearch Tricks 🎯

    • Advanced indexing techniques
    • Query optimization
    • Performance tuning
  • 13 Shreya Shankar 🏗️ Guest Lecture

    • System architecture patterns
    • Scalability considerations
    • Error handling and recovery

Module 6: Specialized Applications

  • 14 Atita Arora 🎯 Guest Lecture

    • Industry-specific implementations
    • Custom knowledge bases
    • Specialized retrieval techniques
  • 15 Text Profiling 📊

    • Text classification
    • Content analysis
    • Metadata extraction
  • 16 Alberto Romero 🔮 Guest Lecture

    • Emerging trends
    • Research directions
    • Future applications

Additional Resources

  • Lab01 Finance Bench 💰
    • Finance-specific RAG implementations
  • Office Hours 🎥
    • Recordings and materials from office hours

Created with ❤️ by Nirant Kasliwal

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •