This is the complete Pinecone API and fully tested. Bug reports and contributions are welcome!
gem install pinecone
require "dotenv/load"
require 'pinecone'
Pinecone.configure do |config|
config.api_key = ENV.fetch('PINECONE_API_KEY')
config.environment = ENV.fetch('PINECONE_ENVIRONMENT')
end
Listing Indexes
pinecone = Pinecone::Client.new
pinecone.list_indexes
Describe Index
pinecone.describe_index("example-index")
Create Index
pinecone.create_index({
"metric": "dotproduct",
"name": "example-index",
"dimension": 3,
"spec": {
"pod": {
"environment": "gcp-starter",
"pod_type": "starter"
}
}
})
Delete Index
pinecone.delete_index("example-index")
Scale replicas
new_number_of_replicas = 4
pinecone.configure_index("example-index", {
replicas: new_number_of_replicas
pod_type: "s1.x1"
})
Adding vectors to an existing index
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.upsert(
namespace: "example-namespace",
vectors: [{
id: "1",
metadata: {
key: value
},
values: [
0.1,
0.2,
0.0
]
}]
)
Querying index with a vector
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(vector: embedding)
Querying index with options
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(vector: embedding,
namespace: "example-namespace",
top_k: 10,
include_values: false,
include_metadata: true)
Fetching a vector from an index
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.fetch(
ids: ["1"],
namespace: "example-namespace"
)
List all vector IDs (only for serverless indexes)
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.list(
namespace: "example-namespace",
prefix: "example-prefix",
)
index.list(
namespace: "example-namespace",
prefix: "example-prefix",
limit: 150
) do |vector_id|
puts vector_id
end
List vector IDs with pagination (only for serverless indexes) (default limit of 100)
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.list_paginated(
namespace: "example-namespace",
prefix: "example-prefix",
limit: 50,
pagination_token: "example-token"
)
Updating a vector in an index
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.update(
id: "1",
values: [0.1, -0.2, 0.0],
set_metadata: { genre: "drama" },
namespace: "example-namespace"
)
Deleting a vector from an index
Note, that only one of ids
, delete_all
or filter
can be included. If ids
are present or delete_all: true
then the filter is removed from the request.
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.delete(
ids: ["1"],
namespace: "example-namespace",
delete_all: false,
filter: {
"genre": { "$eq": "comedy" }
}
)
Describe index statistics. Can be filtered - see Filtering queries
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.describe_index_stats(
filter: {
"genre": { "$eq": "comedy" }
}
)
Add a filter
option to apply filters to your query. You can use vector metadata to limit your search. See metadata filtering in Pinecode documentation.
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(
vector: embedding,
filter: {
"genre": { "$eq": "comedy" }
}
)
Metadata filters can be combined with AND and OR. Other operators are also supported.
{ "$and": [{ "genre": "comedy" }, { "actor": "Brad Pitt" }] } # Genre is 'comedy' and actor is 'Brad Pitt'
{ "$or": [{ "genre": "comedy" }, { "genre": "action" }] } # Genre is 'comedy' or 'action'
{ "genre": { "$eq": "comedy" }} # Genre is 'comedy'
{ "favorite": { "$eq": true }} # Is a favorite
{ "genre": { "$ne": "comedy" }} # Genre is not 'comedy'
{ "favorite": { "$ne": true }} # Is not a favorite
{ "genre": { "$in": ["comedy", "action"] }} # Genre is in the specified values
{ "genre": { "$nin": ["comedy", "action"] }} # Genre is not in the specified values
{ "$gt": 1 }
{ "$gte": 0.5 }
{ "$lt": -0.5 }
{ "$lte": -1 }
Specifying an invalid filter raises ArgumentError
with an error message.
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(
vector: embedding,
sparse_vector: {
indices: [10, 20, 30],
values: [0, 0.5, -1]
}
)
The length of indices and values must match.
pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(
id: "vector1"
)
Either vector
or id
can be supplied as a query parameter, not both. This constraint is validated.
Creating a collection
pinecone = Pinecone::Client.new
pinecone.create_collection({
name: "example-collection",
source: "example-index"
})
List collections
pinecone.list_collections
Describe a collection
pinecone.describe_collection("example-collection")
Delete a collection
pinecone.delete_collection("example-collection")
Contributions welcome!
- Clone the repo locally
bundle
to install gems- run tests with
rspec
- run linter with
standardrb
mv .env.copy .env
and add Pinecone API Key if developing a new endpoint or modifying existing ones- to disable VCR and hit real endpoints,
NO_VCR=true rspec
- to disable VCR and hit real endpoints,
- Cloud index helpers
rake indices:start
rake indices:stop
rake indices:clear
rake indices:counts
The gem is available as open source under the terms of the MIT License.