This project is for reproducing the results of paper DEGAS: Differentiable Efficient Generator Search
-
Python 3.5.5,TensorFlow 1.4.0, NumPy, SciPy, Sklearn
-
To reproduce the IS and FID run: python train_gan.py dataset 'results/' labels --arch='arch_name' --gpu 1 --seed 1
-
labels= 'unsup' or 'sup'
-
For example, cifar10 evaluation:
python train_gan.py cifar10 'results/' 'unsup' --arch='cifar10_n1_resnet_const_end_3e1_no_tg_200' --gpu 1 --seed 1
-