Skip to content

ThalesGroup/fred

Fred

Fred is both:

  • An innovation lab — helping developers rapidly explore agentic patterns, domain-specific logic, and custom tools.
  • A production-ready platform — already integrated with real enterprise constraints: auth, security, document lifecycle, and deployment best practices.

It is composed of:

  • a Python agentic backend (FastAPI + LangGraph)
  • a Python knowledge flow backend (FastAPI) for document ingestion and vector search
  • a React frontend

Fred is not a framework, but a full reference implementation that shows how to build practical multi-agent applications with LangChain and LangGraph. Agents cooperate to answer technical, context-aware questions.

See the project site: https://fredk8.dev

Contents:

Getting started

Note:
Accross all setup modes, a common requirement is to have access to Large Language Model (LLM) APIs via a model provider. Supported options include:

  • Public OpenAI APIs: Connect using your OpenAI API key.
  • Private Ollama Server: Host open-source models such as Mistral, Qwen, Gemma, and Phi locally or on a shared server.
  • Private Azure AI Endpoints: Connect using your Azure OpenAI key.

Detailed instructions for configuring your chosen model provider are provided below.

Local (Native) Mode

To ensure a smooth first-time experience, Fred’s maintainers designed local startup to require no additional external components (except, of course, to LLM APIs).

By default:

  • Fred stores all data on the local filesystem or through local-first tools such as DuckDB (for SQL-like data) and ChromaDB (for local embeddings). Data includes metrics, chat conversations, document uploads, and embeddings.
  • Authentication and authorization are mocked.

Prerequisites

First, make sure you have all the requirements installed
Tool Type Version Install hint
Pyenv Python installer latest Pyenv installation instructions
Python Programming language 3.12.8 Use pyenv install 3.12.8
python3-venv Python venv module/package matching Bundled with Python 3 on most systems; otherwise apt install python3-venv (Debian/Ubuntu)
nvm Node installer latest nvm installation instructions
Node.js Programming language 22.13.0 Use nvm install 22.13.0
Make Utility system Install via system package manager (e.g., apt install make, brew install make)
yq Utility system Install via system package manager
SQLite Local RDBMS engine ≥ 3.35.0 Install via system package manager
Pandoc 2.9.2.1 Pandoc installation instructions For DOCX document ingestion
Dependency details
graph TD
    subgraph FredComponents["Fred Components"]
      style FredComponents fill:#b0e57c,stroke:#333,stroke-width:2px  %% Green Color
        Agentic["agentic_backend"]
        Knowledge["knowledge_flow_backend"]
        Frontend["frontend"]
    end

    subgraph ExternalDependencies["External Dependencies"]
      style ExternalDependencies fill:#74a3d9,stroke:#333,stroke-width:2px  %% Blue Color
        Venv["python3-venv"]
        Python["Python 3.12.8"]
        SQLite["SQLite"]
        Pandoc["Pandoc"]
        Pyenv["Pyenv (Python installer)"]
        Node["Node 22.13.0"]
        NVM["nvm (Node installer)"]
    end

    subgraph Utilities["Utilities"]
      style Utilities fill:#f9d5e5,stroke:#333,stroke-width:2px  %% Pink Color
        Make["Make utility"]
        Yq["yq (YAML processor)"]
    end

    Agentic -->|depends on| Python
    Agentic -->|depends on| Knowledge
    Agentic -->|depends on| Venv

    Knowledge -->|depends on| Python
    Knowledge -->|depends on| Venv
    Knowledge -->|depends on| Pandoc
    Knowledge -->|depends on| SQLite

    Frontend -->|depends on| Node

    Python -->|depends on| Pyenv

    Node -->|depends on| NVM

Loading

Clone

git clone https://github.com/ThalesGroup/fred.git
cd fred

Setup your model provider and model settings

First, copy the 2 dotenv files templates:

# Copy the 2 environment files templates
cp agentic_backend/config/.env.template agentic_backend/config/.env
cp knowledge_flow_backend/config/.env.template knowledge_flow_backend/config/.env

Then, depending on your model provider, actions may differ.

OpenAI

Note:: Out of the box, Fred is configured to use OpenAI public APIs with the following models:

  • Agentic backend:
    • Chat model: gpt-4o
  • Knowledge Flow backend:
    • Chat model: gpt-4o-mini
    • Embedding model: text-embedding-3-large

If you plan to use Fred with these OpenAI models, you don't have to perform the below actions!

  • Agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "openai"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-openai-model-name>"' -i agentic_backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic_backend/config/configuration.yaml
  • Knowledge Flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "openai"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-openai-model-name>"' -i knowledge_flow_backend/config/configuration.yaml
        yq eval 'del(.chat_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "openai"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-openai-model-name>"' -i knowledge_flow_backend/config/configuration.yaml
        yq eval 'del(.embedding_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
  • Copy-paste your OPENAI_API_KEY value in the 2 files:

    • agentic_backend/config/.env
    • knowledge_flow_backend/config/.env

    Warning: ⚠️ An OPENAI_API_KEY from a free OpenAI account unfortunately does not work.

Azure OpenAI
  • Agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "azure-openai"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-azure-openai-deployment-name>"' -i agentic_backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i agentic_backend/config/configuration.yaml
  • Knowledge Flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "azure-openai"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-azure-openai-deployment-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge_flow_backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "azure-openai"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-azure-openai-deployment-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge_flow_backend/config/configuration.yaml
  • Copy-paste your AZURE_OPENAI_API_KEY value in the 2 files:

    • agentic_backend/config/.env
    • knowledge_flow_backend/config/.env
Ollama
  • Agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "ollama"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-ollama-model-name>"' -i agentic_backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.base_url = "<your-ollama-endpoint>"' -i agentic_backend/config/configuration.yaml
  • Knowledge Flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "ollama"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-ollama-model-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.base_url = "<your-ollama-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "ollama"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-ollama-model-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.base_url = "<your-ollama-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
Azure OpenAI via Azure APIM
  • Agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "azure-apim"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-azure-openai-deployment-name>"' -i agentic_backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_ad_client_id = "<your-azure-apim-client-id>"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_ad_client_scope = "<your-azure-apim-client-scope>"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_apim_base_url = "<your-azure-apim-endpoint>"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_apim_resource_path = "<your-azure-apim-resource-path>"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i agentic_backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_tenant_id = "<your-azure-tenant-id>"' -i agentic_backend/config/configuration.yaml
  • Knowledge Flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "azure-apim"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-azure-openai-deployment-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_ad_client_id = "<your-azure-apim-client-id>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_ad_client_scope = "<your-azure-apim-client-scope>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_apim_base_url = "<your-azure-apim-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_apim_resource_path = "<your-azure-apim-resource-path>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_tenant_id = "<your-azure-tenant-id>"' -i knowledge_flow_backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "azure-apim"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-azure-openai-deployment-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_ad_client_id = "<your-azure-apim-client-id>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_ad_client_scope = "<your-azure-apim-client-scope>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_apim_base_url = "<your-azure-apim-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_apim_resource_path = "<your-azure-apim-resource-path>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_tenant_id = "<your-azure-tenant-id>"' -i knowledge_flow_backend/config/configuration.yaml
  • Copy-paste your AZURE_AD_CLIENT_SECRET and AZURE_APIM_SUBSCRIPTION_KEY values in the 2 files:

    • agentic_backend/config/.env
    • knowledge_flow_backend/config/.env

Run the services

# Terminal 1 – knowledge flow backend
cd knowledge_flow_backend && make run
# Terminal 2 – agentic backend
cd agentic_backend && make run
# Terminal 3 – frontend
cd frontend && make run

Open http://localhost:5173 in your browser.

Advanced developer tips

Prerequisites:

  • Visual Studio Code
  • VS Code extensions:
    • Python (ms-python.python)
    • Pylance (ms-python.vscode-pylance)

To get full VS Code Python support (linting, IntelliSense, debugging, etc.) across our repo, we provide:

1. A VS Code workspace file `fred.code-workspace` that loads all sub‑projects.

After cloning the repo, you can open Fred's VS Code workspace with code .vscode/fred.code-workspace

When you open Fred's VS Code workspace, VS Code will load four folders:

  • fred – for any repo‑wide files, scripts, etc
  • agentic_backend – first Python backend
  • knowledge_flow_backend – second Python backend
  • fred-core - a common python library for both python backends
  • frontend – UI
2. Per‑folder `.vscode/settings.json` files in each Python backend to pin the interpreter.

Each backend ships its own virtual environment under .venv. We’ve added a per‑folder VS Code setting (see for instance agentic_backend/.vscode/settings.json) to automatically pick it:

This ensures that as soon as you open a Python file under agentic_backend/ (or knowledge_flow_backend/), VS Code will:

  • Activate that folder’s virtual environment
  • Provide linting, IntelliSense, formatting, and debugging using the correct Python

Dev-Container mode

If you prefer a fully containerised IDE with all dependencies running:

  • Install Docker, VS Code (or an equivalent IDE that supports Dev Containers), and the Dev Containers extension.
  • In VS Code, press F1 → Dev Containers: Reopen in Container.

The Dev Container starts Fred components alongside all the required dependencies Ports 8000 (backend) and 5173 (frontend) are forwarded automatically.

Inside the container, start the servers:

# Terminal 1 – agentic backend
cd agentic_backend && make run
# Terminal 2 – knowledge flow backend
cd knowledge_flow_backend && make run
# Terminal 3 – frontend
cd frontend && make run

Production mode

For production mode, please reach out to your DevOps team so that they tune Fred configuration to match your needs. See this section on advanced configuration.

Advanced configuration

System Architecture

Component Location Role
Frontend UI ./frontend React-based chatbot
Agentic backend ./agentic_backend Multi-agent API server
Knowledge Flow backend ./knowledge_flow_backend Optional knowledge management component (document ingestion & Co)

Configuration Files

File Purpose Tip
agentic_backend/config/.env Secrets (API keys, passwords). Not committed to Git. Copy .env.template to .env and then fill in any missing values.
knowledge_flow_backend/config/.env Same as above Same as above
agentic_backend/config/configuration.yaml Functional settings (providers, agents, feature flags). -
knowledge_flow_backend/config/configuration.yaml Same as above -

Supported Model Providers

Provider How to enable
OpenAI (default) Add OPENAI_API_KEY to config/.env; Adjust configuration.yaml
Azure OpenAI Add AZURE_OPENAI_API_KEY to config/.env; Adjust configuration.yaml
Azure OpenAI via Azure APIM Add AZURE_APIM_SUBSCRIPTION_KEY and AZURE_AD_CLIENT_SECRET to config/.env; Adjust configuration.yaml
Ollama (local models) Adjust configuration.yaml

See agentic_backend/config/configuration.yaml (section ai:) and knowledge_flow_backend/config/configuration.yaml (sections chat_model: and embedding_model:) for concrete examples.

Advanced Integrations

  • Enable Keycloak or another OIDC provider for authentication
  • Persist metrics and files in OpenSearch and MinIO

Core Architecture and Licensing Clarity

The three components just described form the entirety of the Fred platform. They are self-contained and do not require any external dependencies such as MinIO, OpenSearch, or Weaviate.

Instead, Fred is designed with a modular architecture that allows optional integration with these technologies. By default, a minimal Fred deployment can use just the local filesystem for all storage needs.

Documentation

Licensing Note

Fred is released under the Apache License 2.0. It does *not embed or depend on any LGPLv3 or copyleft-licensed components. Optional integrations (like OpenSearch or Weaviate) are configured externally and do not contaminate Fred's licensing. This ensures maximum freedom and clarity for commercial and internal use.

In short: Fred is 100% Apache 2.0, and you stay in full control of any additional components.

See the LICENSE for more details.

Contributing

We welcome pull requests and issues. Start with the Contributing guide.

Community

Join the discussion on our Discord server!

Join our Discord

Contacts

About

the UI and agentic backend of the fred innovation track

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

 
 
 

Contributors 12