-
Create and activate the conda environment:
conda create -n stamo python=3.10 -y conda activate stamo
-
Install the package:
cd StaMo && pip install -e .
-
Download robotic data in advance and extract them into image format
-
Convert to JSON format using our provided script:
python scripts/create_jsons.py
-
Configure your setup (optional):
- Modify configuration files according to your VRAM requirements
- Adjust training parameters as needed
-
Start training:
bash scripts/train_libero.sh
-
Monitor training progress:
tensorboard --logdir .
Validate your trained model and results:
python validate_renderer.py
If you use this work in your research, please cite our paper:
@article{liu2025stamo,
title={StaMo: Unsupervised Learning of Generalizable Robotic Motions from Static Images},
author={Liu, Mingyu and Shu, Jiuhe and Chen, Hui and Li, Zeju and Zhao, Canyu and Yang, Jiange and Gao, Shenyuan and Chen, Hao and Shen, Chunhua},
journal={arXiv preprint arXiv:2510.05057},
year={2025}
}
@article{zhao2024moviedreamer,
title={Moviedreamer: Hierarchical generation for coherent long visual sequence},
author={Zhao, Canyu and Liu, Mingyu and Wang, Wen and Chen, Weihua and Wang, Fan and Chen, Hao and Zhang, Bo and Shen, Chunhua},
journal={arXiv preprint arXiv:2407.16655},
year={2024}
}
For academic use, this project is licensed under the 2-clause BSD License. For commercial use, please contact Chunhua Shen.