Skip to content

aim-uofa/StaMo

Repository files navigation

🤖 StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation

🚀 Quick Start

🛠️ Installation

  1. Create and activate the conda environment:

    conda create -n stamo python=3.10 -y
    conda activate stamo
  2. Install the package:

    cd StaMo && pip install -e .

🎯 Usage

🎨 Diffusion AutoEncoder

📊 Step 1: Data Format Conversion

  1. Download robotic data in advance and extract them into image format

  2. Convert to JSON format using our provided script:

    python scripts/create_jsons.py

🏋️ Step 2: Model Training

  1. Configure your setup (optional):

    • Modify configuration files according to your VRAM requirements
    • Adjust training parameters as needed
  2. Start training:

    bash scripts/train_libero.sh
  3. Monitor training progress:

    tensorboard --logdir .

📈 Step 3: Validation

Validate your trained model and results:

python validate_renderer.py

📚 Citation

If you use this work in your research, please cite our paper:

@article{liu2025stamo,
  title={StaMo: Unsupervised Learning of Generalizable Robotic Motions from Static Images},
  author={Liu, Mingyu and Shu, Jiuhe and Chen, Hui and Li, Zeju and Zhao, Canyu and Yang, Jiange and Gao, Shenyuan and Chen, Hao and Shen, Chunhua},
  journal={arXiv preprint arXiv:2510.05057},
  year={2025}
}

@article{zhao2024moviedreamer,
  title={Moviedreamer: Hierarchical generation for coherent long visual sequence},
  author={Zhao, Canyu and Liu, Mingyu and Wang, Wen and Chen, Weihua and Wang, Fan and Chen, Hao and Zhang, Bo and Shen, Chunhua},
  journal={arXiv preprint arXiv:2407.16655},
  year={2024}
}

🎫 License

For academic use, this project is licensed under the 2-clause BSD License. For commercial use, please contact Chunhua Shen.

About

Unsupervised Learning of Generalizable Robot Motion from Compact State Representation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages