https://ablina.readthedocs.io/en/latest
Ablina can be installed using pip:
pip install ablina
or by directly cloning the git repository:
git clone https://github.com/daniyal1249/ablina.git
and running the following in the cloned repo:
pip install .
>>> from ablina import *
To define a subspace of fn
>>> V = fn('V', R, 3)
>>> print(V.info())
V (Subspace of R^3)
-------------------
Field R
Identity [0, 0, 0]
Basis [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
Dimension 3
Vector [c0, c1, c2]
You can provide a list of constraints
>>> U = fn('U', R, 3, constraints=['v0 == 0', '2*v1 == v2'])
>>> print(U.info())
U (Subspace of R^3)
-------------------
Field R
Identity [0, 0, 0]
Basis [[0, 1, 2]]
Dimension 1
Vector [0, c0, 2*c0]
Or specify a basis
>>> W = fn('W', R, 3, basis=[[1, 0, 0], [0, 1, 0]])
>>> print(W.info())
W (Subspace of R^3)
-------------------
Field R
Identity [0, 0, 0]
Basis [[1, 0, 0], [0, 1, 0]]
Dimension 2
Vector [c0, c1, 0]
Check whether a vector is an element of a vector space
>>> [1, 2, 0] in W
True
>>> [1, 2, 1] in W
False
Generate a random vector from a vector space
>>> U.vector()
[0, 2, 4]
>>> U.vector(arbitrary=True)
[0, c0, 2*c0]
Find the coordinate vector representation of a vector
>>> W.to_coordinate([1, 2, 0])
[1, 2]
>>> W.from_coordinate([1, 2])
[1, 2, 0]
>>> W.to_coordinate([1, 2, 0], basis=[[1, 1, 0], [1, -1, 0]])
[3/2, -1/2]
Check whether a list of vectors is linearly independent
>>> V.is_independent([1, 1, 0], [1, 0, 0])
True
>>> V.is_independent([1, 2, 3], [2, 4, 6])
False
Check for equality of two vector spaces
>>> U == W
False
Check whether a vector space is a subspace of another
>>> V.is_subspace(U)
True
>>> U.is_subspace(V)
False
Take the sum of two vector spaces
>>> X = U.sum(W)
>>> print(X.info())
U + W (Subspace of R^3)
-----------------------
Field R
Identity [0, 0, 0]
Basis [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
Dimension 3
Vector [c0, c1, c2]
Take the intersection of two vector spaces
>>> X = U.intersection(W)
>>> print(X.info())
U ∩ W (Subspace of R^3)
-----------------------
Field R
Identity [0, 0, 0]
Basis []
Dimension 0
Vector [0, 0, 0]
Take the quotient of two vector spaces
>>> X = V.quotient(U)
>>> print(X.info())
V / U (Subspace of R^3 / U)
---------------------------
Field R
Identity U + [0, 0, 0]
Basis [U + [1, 0, 0], U + [0, 1, -1/2]]
Dimension 2
Vector U + [c0, c1, -c1/2]
Take the span of a list of vectors
>>> S = V.span('S', [1, 2, 3], [4, 5, 6])
>>> print(S.info())
S (Subspace of R^3)
-------------------
Field R
Identity [0, 0, 0]
Basis [[1, 0, -1], [0, 1, 2]]
Dimension 2
Vector [c0, c1, -c0 + 2*c1]
>>> def mapping(vec):
>>> return [vec[0], vec[1], 0]
>>>
>>> T = LinearMap('T', domain=V, codomain=W, mapping=mapping)
>>> print(T.info())
T : V → W
---------
Field R
Rank 2
Nullity 1
Injective? False
Surjective? True
Bijective? False
Matrix [[1, 0, 0], [0, 1, 0]]
>>> T([0, 0, 0])
[0, 0, 0]
>>> T([1, 2, 3])
[1, 2, 0]
Find the image of a linear map
>>> im = T.image()
>>> print(im.info())
im(T) (Subspace of R^3)
-----------------------
Field R
Identity [0, 0, 0]
Basis [[1, 0, 0], [0, 1, 0]]
Dimension 2
Vector [c0, c1, 0]
Find the kernel of a linear map
>>> ker = T.kernel()
>>> print(ker.info())
ker(T) (Subspace of R^3)
------------------------
Field R
Identity [0, 0, 0]
Basis [[0, 0, 1]]
Dimension 1
Vector [0, 0, c0]
Here we define the standard dot product
>>> def mapping(vec1, vec2):
>>> return sum(i * j for i, j in zip(vec1, vec2))
>>>
>>> dot = InnerProduct('dot', vectorspace=V, mapping=mapping)
>>> print(dot.info())
dot : V × V → R
---------------
Orthonormal Basis [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
Matrix [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> dot([1, 2, 3], [1, 2, 3])
14
Compute the norm of a vector
>>> dot.norm([1, 2, 3])
sqrt(14)
Check whether a list of vectors is pairwise orthogonal
>>> dot.is_orthogonal([1, 2, 3], [4, 5, 6])
False
>>> dot.is_orthogonal([0, 0, 0], [1, 2, 3])
True
Check whether a list of vectors is orthonormal
>>> dot.is_orthonormal([1, 0, 0], [0, 1, 0], [0, 0, 1])
True
Take the orthogonal complement of a vector space
>>> X = dot.ortho_complement(U)
>>> print(X.info())
perp(U) (Subspace of R^3)
-------------------------
Field R
Identity [0, 0, 0]
Basis [[1, 0, 0], [0, 1, -1/2]]
Dimension 2
Vector [c0, c1, -c1/2]
>>> def mapping(vec):
>>> return [vec[0], 2*vec[1], 3*vec[2]]
>>>
>>> T = LinearOperator('T', vectorspace=V, mapping=mapping)
>>> print(T.info())
T : V → V
---------
Field R
Rank 3
Nullity 0
Injective? True
Surjective? True
Bijective? True
Matrix [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
>>> T([1, 1, 1])
[1, 2, 3]
Given an inner product, check whether a linear operator
>>> T.is_symmetric(dot)
True
>>> T.is_hermitian(dot)
True
>>> T.is_orthogonal(dot)
False
>>> T.is_unitary(dot)
False
>>> T.is_normal(dot)
True