Skip to content

Commit

Permalink
[feature] add rcan model for remote sensing image super-resolution (P…
Browse files Browse the repository at this point in the history
…addlePaddle#610)

* [feature] add rcan model for super-resolution
  • Loading branch information
kongdebug authored May 16, 2022
1 parent 413376b commit 1e1e2ad
Show file tree
Hide file tree
Showing 7 changed files with 484 additions and 0 deletions.
104 changes: 104 additions & 0 deletions configs/rcan_rssr_x4.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
total_iters: 1000000
output_dir: output_dir
# tensor range for function tensor2img
min_max:
(0., 255.)

model:
name: RCANModel
generator:
name: RCAN
scale: 4
n_resgroups: 10
n_resblocks: 20
pixel_criterion:
name: L1Loss

dataset:
train:
name: SRDataset
gt_folder: data/DIV2K/DIV2K_train_HR_sub
lq_folder: data/DIV2K/DIV2K_train_LR_bicubic/X4_sub
num_workers: 4
batch_size: 16
scale: 4
preprocess:
- name: LoadImageFromFile
key: lq
- name: LoadImageFromFile
key: gt
- name: Transforms
input_keys: [lq, gt]
pipeline:
- name: SRPairedRandomCrop
gt_patch_size: 192
scale: 4
keys: [image, image]
- name: PairedRandomHorizontalFlip
keys: [image, image]
- name: PairedRandomVerticalFlip
keys: [image, image]
- name: PairedRandomTransposeHW
keys: [image, image]
- name: Transpose
keys: [image, image]
- name: Normalize
mean: [0., .0, 0.]
std: [1., 1., 1.]
keys: [image, image]
test:
name: SRDataset
gt_folder: data/Set14/GTmod12
lq_folder: data/Set14/LRbicx4
scale: 4
preprocess:
- name: LoadImageFromFile
key: lq
- name: LoadImageFromFile
key: gt
- name: Transforms
input_keys: [lq, gt]
pipeline:
- name: Transpose
keys: [image, image]
- name: Normalize
mean: [0., .0, 0.]
std: [1., 1., 1.]
keys: [image, image]

lr_scheduler:
name: CosineAnnealingRestartLR
learning_rate: 0.0001
periods: [1000000]
restart_weights: [1]
eta_min: !!float 1e-7

optimizer:
name: Adam
# add parameters of net_name to optim
# name should in self.nets
net_names:
- generator
beta1: 0.9
beta2: 0.99

validate:
interval: 2500
save_img: false

metrics:
psnr: # metric name, can be arbitrary
name: PSNR
crop_border: 4
test_y_channel: True
ssim:
name: SSIM
crop_border: 4
test_y_channel: True

log_config:
interval: 10
visiual_interval: 5000

snapshot_config:
interval: 2500
Binary file added docs/imgs/RSSR.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
70 changes: 70 additions & 0 deletions docs/zh_CN/tutorials/remote_sensing_image_super-resolution.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
# 1.单幅遥感图像超分辨率重建

## 1.1 背景和原理介绍

**意义与应用场景**:单幅影像超分辨率重建一直是low-level视觉领域中一个比较热门的任务,其可以成为修复老电影、老照片的技术手段,也可以为图像分割、目标检测等下游任务提供质量较高的数据。在遥感中的应用场景也比较广泛,例如:在**船舶检测和分类**等诸多遥感影像应用中,**提高遥感影像分辨率具有重要意义**

**原理**:单幅遥感影像的超分辨率重建本质上与单幅影像超分辨率重建类似,均是使用RGB三通道的低分辨率影像生成纹理清晰的高分辨率影像。本项目复现的论文是[Yulun Zhang](http://yulunzhang.com/), [Kunpeng Li](https://kunpengli1994.github.io/), [Kai Li](http://kailigo.github.io/), [Lichen Wang](https://sites.google.com/site/lichenwang123/), [Bineng Zhong](https://scholar.google.de/citations?user=hvRBydsAAAAJ&hl=en), and [Yun Fu](http://www1.ece.neu.edu/~yunfu/), 发表在ECCV 2018上的论文[《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》](https://arxiv.org/abs/1807.02758)
作者提出了一个深度残差通道注意力网络(RCAN),引入一种通道注意力机制(CA),通过考虑通道之间的相互依赖性来自适应地重新调整特征。该模型取得优异的性能,因此本项目选择RCAN进行单幅遥感影像的x4超分辨率重建。

## 1.2 如何使用

### 1.2.1 数据准备
本项目的训练分为两个阶段,第一个阶段使用[DIV2K数据集](https://data.vision.ee.ethz.ch/cvl/DIV2K/)进行预训练RCANx4模型,然后基于该模型再使用[遥感超分数据集合](https://aistudio.baidu.com/aistudio/datasetdetail/129011)进行迁移学习。
- 关于DIV2K数据的准备方法参考[该文档](./single_image_super_resolution.md)
- 遥感超分数据准备
- 数据已经上传至AI studio中,该数据为从UC Merced Land-Use Dataset 21 级土地利用图像遥感数据集中抽取部分遥感影像,通过BI退化生成的HR-LR影像对用于训练超分模型,其中训练集6720对,测试集420对
- 下载解压后的文件组织形式如下
```
├── RSdata_for_SR
├── train_HR
├── train_LR
| └──x4
├── test_HR
├── test_LR
| └──x4
```

### 1.2.2 DIV2K数据集上训练/测试

首先是在DIV2K数据集上训练RCANx4模型,并以Set14作为测试集。按照论文需要准备RCANx2作为初始化权重,可通过下表进行获取。

| 模型 | 数据集 | 下载地址 |
|---|---|---|
| RCANx2 | DIV2K | [RCANx2](https://paddlegan.bj.bcebos.com/models/RCAN_X2_DIV2K.pdparams)


将DIV2K数据按照 [该文档](./single_image_super_resolution.md)所示准备好后,执行以下命令训练模型,`--load`的参数为下载好的RCANx2模型权重所在路径。

```shell
python -u tools/main.py --config-file configs/rcan_rssr_x4.yaml --load ${PATH_OF_WEIGHT}
```

训练好后,执行以下命令可对测试集Set14预测,`--load`的参数为训练好的RCANx4模型权重
```shell
python tools/main.py --config-file configs/rcan_rssr_x4.yaml --evaluate-only --load ${PATH_OF_WEIGHT}
```

本项目在DIV2K数据集训练迭代第57250次得到的权重[RCAN_X4_DIV2K](https://pan.baidu.com/s/1rI7yUdD4T1DE0RZB5yHXjA)(提取码:aglw),在Set14数据集上测得的精度:`PSNR:28.8959 SSIM:0.7896`

### 1.2.3 遥感超分数据上迁移学习训练/测试
- 使用该数据集,需要修改`rcan_rssr_x4.yaml`文件中训练集与测试集的高分辨率图像路径和低分辨率图像路径,即文件中的`gt_folder``lq_folder`
- 同时,由于使用了在DIV2K数据集上训练的RCAN_X4_DIV2K模型权重来进行迁移学习,所以训练的迭代次数`total_iters`也可以进行修改,并不需要很多次数的迭代就能有良好的效果。训练模型中`--load`的参数为下载好的RCANx4模型权重所在路径。

训练模型:
```shell
python -u tools/main.py --config-file configs/rcan_rssr_x4.yaml --load ${PATH_OF_RCANx4_WEIGHT}
```
测试模型:
```shell
python -u tools/main.py --config-file configs/rcan_rssr_x4.yaml --load ${PATH_OF_RCANx4_WEIGHT}
```

## 1.3 实验结果

- RCANx4遥感影像超分效果

<img src=../../imgs/RSSR.png></img>

- [RCAN遥感影像超分辨率重建 Ai studio 项目在线体验](https://aistudio.baidu.com/aistudio/projectdetail/3508912)

1 change: 1 addition & 0 deletions ppgan/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,4 +35,5 @@
from .photopen_model import PhotoPenModel
from .msvsr_model import MultiStageVSRModel
from .singan_model import SinGANModel
from .rcan_model import RCANModel
from .prenet_model import PReNetModel
1 change: 1 addition & 0 deletions ppgan/models/generators/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,4 +39,5 @@
from .basicvsr_plus_plus import BasicVSRPlusPlus
from .msvsr import MSVSR
from .generator_singan import SinGANGenerator
from .rcan import RCAN
from .prenet import PReNet
202 changes: 202 additions & 0 deletions ppgan/models/generators/rcan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
# base on https://github.com/kongdebug/RCAN-Paddle
import math
import paddle
import paddle.nn as nn

from .builder import GENERATORS


def default_conv(in_channels, out_channels, kernel_size, bias=True):
weight_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierUniform(), need_clip=True)
return nn.Conv2D(in_channels,
out_channels,
kernel_size,
padding=(kernel_size // 2),
weight_attr=weight_attr,
bias_attr=bias)


class MeanShift(nn.Conv2D):

def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = paddle.to_tensor(rgb_std)
self.weight.set_value(paddle.eye(3).reshape([3, 3, 1, 1]))
self.weight.set_value(self.weight / (std.reshape([3, 1, 1, 1])))

mean = paddle.to_tensor(rgb_mean)
self.bias.set_value(sign * rgb_range * mean / std)

self.weight.trainable = False
self.bias.trainable = False


## Channel Attention (CA) Layer
class CALayer(nn.Layer):

def __init__(self, channel, reduction=16):
super(CALayer, self).__init__()
# global average pooling: feature --> point
self.avg_pool = nn.AdaptiveAvgPool2D(1)
# feature channel downscale and upscale --> channel weight
self.conv_du = nn.Sequential(
nn.Conv2D(channel,
channel // reduction,
1,
padding=0,
bias_attr=True), nn.ReLU(),
nn.Conv2D(channel // reduction,
channel,
1,
padding=0,
bias_attr=True), nn.Sigmoid())

def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y


class RCAB(nn.Layer):

def __init__(self,
conv,
n_feat,
kernel_size,
reduction=16,
bias=True,
bn=False,
act=nn.ReLU(),
res_scale=1):
super(RCAB, self).__init__()
modules_body = []
for i in range(2):
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
if bn: modules_body.append(nn.BatchNorm2D(n_feat))
if i == 0: modules_body.append(act)
modules_body.append(CALayer(n_feat, reduction))
self.body = nn.Sequential(*modules_body)
self.res_scale = res_scale

def forward(self, x):
res = self.body(x)
res += x
return res


## Residual Group (RG)
class ResidualGroup(nn.Layer):

def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale,
n_resblocks):
super(ResidualGroup, self).__init__()
modules_body = []
modules_body = [
RCAB(
conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(), res_scale=1) \
for _ in range(n_resblocks)]
modules_body.append(conv(n_feat, n_feat, kernel_size))
self.body = nn.Sequential(*modules_body)

def forward(self, x):
res = self.body(x)
res += x
return res


class Upsampler(nn.Sequential):

def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):
m = []
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
for _ in range(int(math.log(scale, 2))):
m.append(conv(n_feats, 4 * n_feats, 3, bias))
m.append(nn.PixelShuffle(2))
if bn: m.append(nn.BatchNorm2D(n_feats))

if act == 'relu':
m.append(nn.ReLU())
elif act == 'prelu':
m.append(nn.PReLU(n_feats))

elif scale == 3:
m.append(conv(n_feats, 9 * n_feats, 3, bias))
m.append(nn.PixelShuffle(3))
if bn: m.append(nn.BatchNorm2D(n_feats))

if act == 'relu':
m.append(nn.ReLU())
elif act == 'prelu':
m.append(nn.PReLU(n_feats))
else:
raise NotImplementedError

super(Upsampler, self).__init__(*m)


@GENERATORS.register()
class RCAN(nn.Layer):

def __init__(
self,
scale,
n_resgroups,
n_resblocks,
n_feats=64,
n_colors=3,
rgb_range=255,
kernel_size=3,
reduction=16,
conv=default_conv,
):
super(RCAN, self).__init__()
self.scale = scale
act = nn.ReLU()

n_resgroups = n_resgroups
n_resblocks = n_resblocks
n_feats = n_feats
kernel_size = kernel_size
reduction = reduction
scale = scale
act = nn.ReLU()

rgb_mean = (0.4488, 0.4371, 0.4040)
rgb_std = (1.0, 1.0, 1.0)
self.sub_mean = MeanShift(rgb_range, rgb_mean, rgb_std)

# define head module
modules_head = [conv(n_colors, n_feats, kernel_size)]

# define body module
modules_body = [
ResidualGroup(
conv, n_feats, kernel_size, reduction, act=act, res_scale= 1, n_resblocks=n_resblocks) \
for _ in range(n_resgroups)]

modules_body.append(conv(n_feats, n_feats, kernel_size))

# define tail module
modules_tail = [
Upsampler(conv, scale, n_feats, act=False),
conv(n_feats, n_colors, kernel_size)
]

self.head = nn.Sequential(*modules_head)
self.body = nn.Sequential(*modules_body)
self.tail = nn.Sequential(*modules_tail)

self.add_mean = MeanShift(rgb_range, rgb_mean, rgb_std, 1)

def forward(self, x):
x = self.sub_mean(x)
x = self.head(x)

res = self.body(x)
res += x

x = self.tail(res)
x = self.add_mean(x)

return x
Loading

0 comments on commit 1e1e2ad

Please sign in to comment.