Skip to content

jomorlier/IA4SM

Repository files navigation

IA_3A_SM

Noteboook and Data for course on IA for SM

Part 0. A very good introduction by Prof. Sid Kumar

Machine Learning Applications in Material Science - Part 1

Machine Learning Applications in Material Science - Part 2

Notebooks will come

Verified on colab

Slides P1 Part 1. Gaussian processes Regression

Introduction to Gaussian processes, mathematical foundations in 30’ Exercise: How can I program my GPR 30’

Beware of noisy data when using sigma_n as noise !

Slides P23 Part 2. Gaussian processes versus neural networks

Inspired by Prof. Miguel Bessa Imechanica Large-scale illustration, hyper parameter tuning, BO in 30’ Exercise: How do I use toolboxes on more complex examples 45’

Part 3. Physics Informed Neural Networks {PINN}

What is a PINN knowing a NN? in 15' Exercise: How to Train a PINN to simulate a dynamic system (damped harmonic oscillator) in 30’s

Solution in video

Slides P4 Part 4. Variational Autoencoder (VAE) for Topology Optimization and Convolutional VAE

  • The basics of variational autoencoders
  • How to design and train a VAE model
  • How to implement a Convolutional VAE for topology optimization tasks
  • Best practices for loss functions and optimization in generative models

in french

Part 1. Régression par processus gaussiens

Introduction aux processus gaussiens, fondements mathématiques en 30’ Exercice: Je programme mon GPR 30’ Attention bruiter les données quand on utilise sigma_n comme bruit

Part 2. processus gaussiens versus réseaux de neurones

Illustration en grande dimension, hyper parameter tuning, BO en 30’ Exercice: J’utilise des toolboxes sur des exemples plus complexes 45’

Part 3. Physics Informed Neural Networks {PINN}

Qu’est ce qu’un PINN connaissant un NN? en 15’ Exercice: Entrainer un PINN pour simuler le système (oscillateur harmonique amorti) en 30’

Bonus: Entrainer un PINN pour inverser les paramètres sous-jacents

Aknowledgments in the notebooks

Part 4. Auto-encodeur Variationnel (VAE) pour l'optimisation topologique et VAE Convolutionnel

  • Les bases des auto-encodeurs variationnels
  • Comment concevoir et entraîner un modèle VAE
  • Comment implémenter un VAE convolutionnel pour des tâches d'optimisation topologique
  • Les bonnes pratiques concernant les fonctions de perte et l'optimisation dans les modèles génératifs

Online references

https://neurips.cc/virtual/2021/tutorial/21890

http://www.infinitecuriosity.org/vizgp/

https://distill.pub/2019/visual-exploration-gaussian-processes/

UCLxDeepMind Deep Learning 2020 Lecture (PDF)

About

Notebooks and Data for 3rd year program course on IA applied to SM

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •