Skip to content

segfit/segfit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SegFit: Robust Human Mesh Fitting on In-the-Wild Point Clouds with Body Part Segmentation

segfit

Installation

First, clone this repository recursively: git clone --recurse-submodules https://github.com/segfit/segfit.git Then set up the environment as detailed on the Human3D repository. Finally, run pip install -r requirements.txt.

Input Format

The input path should point to a directory containing PLY files. As neither Human3D nor SegFit require color information, it is sufficient if the PLYs contain only the vertex coordinates. The SMPL-X ground truth path can be omitted. If provided, it should point to a directory containing PKL files with names corresponding to the PLYs. If a scan contains multiple humans and, therefore, multiple ground truth PKLs exist for the scan, make sure that their filenames follow the convention "*'ply-filename'.pkl".

Running

Simply run with: python segfit.py --input_path=<input_path> --human3d_ckpt=<checkpoint_path> --is_input_z_up=<True/False> --smplx_gt_dir=<path_to_SMPLX_ground_truths The is_input_z_upparameter defaults to True and providing SMPLX ground truth parameters is optional. If using the Hi4D dataset, also add the --is_hi4d flag for correct coordinate system alignment.

Example

Run: python segfit.py --input_path=<repository_path>/example/egobody/scans/ --human3d_ckpt=ckpts/human3d.ckpt --is_input_z_up=False --smplx_gt_dir=<repository_path>/example/egobody/truths/.

Acknowledgements

The pretrained checkpoint for Human3D is taken from the official Human3D repository.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •