This project lists all of the deliverables for the TUM project course Applied Reinforcement Learning (Summer Semester 2019).
| State Representation | Linear Value Function Approximation | Algorithms |
|---|---|---|
| Simulation | Real Turtlebot |
|---|---|
- Python 2.7 (Python 3 for sensor-model fitting and auto-encoder training)
- ROS-Kinetic with turtlebot
- Catkin
- PyTroch
- Scipy
- PyYAML
- Move the
rl_tb_lidarandstage_ros_ufolders tocatkin_ws/srcdirectory. - run
catkin_makein thecatkin_wsdirectory. - Run
source devel/setup.bashcommand in thecatkin_wsdirectory. - Run
roslaunch rl_tb_lidar tb_stage_m1.launchto launch only stage. - Open an another terminal, go to the directory of the python script e.g.
cd ~/catkin_ws/src/rl_tb_lidar/srcand runpython main.py configs/config.yaml. - To try different configurations, edit the
configs/config.yamlfile accordingly.
We version the project with each new deliverable. For the versions available, see the tags on this repository.
- Akbar, Uzair - uzair.akbar@tum.de
- Gundogan, Alperen - ga53keb@mytum.de
- Ellouze, Rachid - ga63nix@mytum.de
See also the list of contributors.