Physics:Dyson series
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams.
This series diverges asymptotically, but in quantum electrodynamics (QED) at the second order the difference from experimental data is in the order of 10−10. This close agreement holds because the coupling constant (also known as the fine-structure constant) of QED is much less than 1.[ 10^-5, so how does it follow that second order approximation in alpha is good to 10^-10? (December 2019)">clarification needed]
Dyson operator
In the interaction picture, a Hamiltonian H, can be split into a free part H0 and an interacting part VS(t) as H = H0 + VS(t).
The potential in the interacting picture is
- [math]\displaystyle{ V_{\mathrm I}(t) = \mathrm{e}^{\mathrm{i} H_{0}(t - t_{0})/\hbar} V_{\mathrm S}(t) \mathrm{e}^{-\mathrm{i} H_{0} (t - t_{0})/\hbar}, }[/math]
where [math]\displaystyle{ H_0 }[/math] is time-independent and [math]\displaystyle{ V_{\mathrm S}(t) }[/math] is the possibly time-dependent interacting part of the Schrödinger picture. To avoid subscripts, [math]\displaystyle{ V(t) }[/math] stands for [math]\displaystyle{ V_\mathrm{I}(t) }[/math] in what follows.
In the interaction picture, the evolution operator U is defined by the equation:
- [math]\displaystyle{ \Psi(t) = U(t,t_0) \Psi(t_0) }[/math]
This is sometimes called the Dyson operator.
The evolution operator forms a unitary group with respect to the time parameter. It has the group properties:
- Identity and normalization: [math]\displaystyle{ U(t,t) = 1, }[/math][1]
- Composition: [math]\displaystyle{ U(t,t_0) = U(t,t_1) U(t_1,t_0), }[/math][2]
- Time Reversal: [math]\displaystyle{ U^{-1}(t,t_0) = U(t_0,t), }[/math][clarification needed]
- Unitarity: [math]\displaystyle{ U^{\dagger}(t,t_0) U(t,t_0)=\mathbb{1} }[/math][3]
and from these is possible to derive the time evolution equation of the propagator:[4]
- [math]\displaystyle{ i\hbar\frac d{dt} U(t,t_0)\Psi(t_0) = V(t) U(t,t_0)\Psi(t_0). }[/math]
In the interaction picture, the Hamiltonian is the same as the interaction potential [math]\displaystyle{ H_{\rm int}=V(t) }[/math] and thus the equation can also be written in the interaction picture as
- [math]\displaystyle{ i\hbar \frac d{dt} \Psi(t) = H_{\rm int}\Psi(t) }[/math]
Caution: this time evolution equation is not to be confused with the Tomonaga–Schwinger equation.
The formal solution is
- [math]\displaystyle{ U(t,t_0)=1 - i\hbar^{-1} \int_{t_0}^t{dt_1\ V(t_1)U(t_1,t_0)}, }[/math]
which is ultimately a type of Volterra integral.
Derivation of the Dyson series
An iterative solution of the Volterra equation above leads to the following Neumann series:
- [math]\displaystyle{ \begin{align} U(t,t_0) = {} & 1 - i\hbar^{-1} \int_{t_0}^t dt_1V(t_1) + (-i\hbar^{-1})^2\int_{t_0}^t dt_1 \int_{t_0}^{t_1} \, dt_2 V(t_1)V(t_2)+\cdots \\ & {} + (-i\hbar^{-1})^n\int_{t_0}^t dt_1\int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_nV(t_1)V(t_2) \cdots V(t_n) +\cdots. \end{align} }[/math]
Here, [math]\displaystyle{ t_1 \gt t_2 \gt \cdots \gt t_n }[/math], and so the fields are time-ordered. It is useful to introduce an operator [math]\displaystyle{ \mathcal T }[/math], called the time-ordering operator, and to define
- [math]\displaystyle{ U_n(t,t_0)=(-i\hbar^{-1} )^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n\,\mathcal TV(t_1) V(t_2)\cdots V(t_n). }[/math]
The limits of the integration can be simplified. In general, given some symmetric function [math]\displaystyle{ K(t_1, t_2,\dots,t_n), }[/math] one may define the integrals
- [math]\displaystyle{ S_n=\int_{t_0}^t dt_1\int_{t_0}^{t_1} dt_2\cdots \int_{t_0}^{t_{n-1}} dt_n \, K(t_1, t_2,\dots,t_n). }[/math]
and
- [math]\displaystyle{ I_n=\int_{t_0}^t dt_1\int_{t_0}^t dt_2\cdots\int_{t_0}^t dt_nK(t_1, t_2,\dots,t_n). }[/math]
The region of integration of the second integral can be broken in [math]\displaystyle{ n! }[/math] sub-regions, defined by [math]\displaystyle{ t_1 \gt t_2 \gt \cdots \gt t_n }[/math]. Due to the symmetry of [math]\displaystyle{ K }[/math], the integral in each of these sub-regions is the same and equal to [math]\displaystyle{ S_n }[/math] by definition. It follows that
- [math]\displaystyle{ S_n = \frac{1}{n!}I_n. }[/math]
Applied to the previous identity, this gives
- [math]\displaystyle{ U_n=\frac{(-i \hbar^{-1})^n}{n!}\int_{t_0}^t dt_1\int_{t_0}^t dt_2\cdots\int_{t_0}^t dt_n \, \mathcal TV(t_1)V(t_2)\cdots V(t_n). }[/math]
Summing up all the terms, the Dyson series is obtained. It is a simplified version of the Neumann series above and which includes the time ordered products; it is the path-ordered exponential:[5]
- [math]\displaystyle{ \begin{align} U(t,t_0)&=\sum_{n=0}^\infty U_n(t,t_0)\\ &=\sum_{n=0}^\infty \frac{(-i\hbar^{-1})^n}{n!}\int_{t_0}^t dt_1\int_{t_0}^t dt_2\cdots\int_{t_0}^t dt_n \, \mathcal TV(t_1)V(t_2)\cdots V(t_n) \\ &=\mathcal T\exp{-i\hbar^{-1}\int_{t_0}^t{d\tau V(\tau)}} \end{align} }[/math]
This result is also called Dyson's formula.[6] The group laws can be derived from this formula.
Application on state vectors
The state vector at time [math]\displaystyle{ t }[/math] can be expressed in terms of the state vector at time [math]\displaystyle{ t_0 }[/math], for [math]\displaystyle{ t\gt t_0, }[/math] as
- [math]\displaystyle{ |\Psi(t)\rangle=\sum_{n=0}^\infty {(-i\hbar^{-1})^n\over n!}\underbrace{\int dt_1 \cdots dt_n}_{t_{\rm f}\,\ge\, t_1\,\ge\, \cdots\, \ge\, t_n\,\ge\, t_{\rm i}}\, \mathcal{T}\left\{\prod_{k=1}^n e^{iH_0 t_k/\hbar}V(t_{k})e^{-iH_0 t_k/\hbar}\right \}|\Psi(t_0)\rangle. }[/math]
The inner product of an initial state at [math]\displaystyle{ t_i=t_0 }[/math] with a final state at [math]\displaystyle{ t_f=t }[/math] in the Schrödinger picture, for [math]\displaystyle{ t_f\gt t_i }[/math] is:
- [math]\displaystyle{ \begin{align} \langle\Psi(t_{\rm i}) & \mid\Psi(t_{\rm f})\rangle=\sum_{n=0}^\infty {(-i\hbar^{-1})^n\over n!} \times \\ &\underbrace{\int dt_1 \cdots dt_n}_{t_{\rm f}\,\ge\, t_1\,\ge\, \cdots\, \ge\, t_n\,\ge\, t_{\rm i}}\, \langle\Psi(t_i)\mid e^{-iH_0(t_{\rm f}-t_1)/\hbar}V_{\rm S}(t_1)e^{-iH_0(t_1-t_2)/\hbar}\cdots V_{\rm S}(t_n) e^{-iH_0(t_n-t_{\rm i})/\hbar}\mid\Psi(t_i)\rangle \end{align} }[/math]
The S-matrix may be obtained by writing this in the Heisenberg picture, taking the in and out states to be at infinity:[7]
- [math]\displaystyle{ \langle\Psi_{\rm out} \mid S\mid\Psi_{\rm in}\rangle= \langle\Psi_{\rm out}\mid\sum_{n=0}^\infty {(-i\hbar^{-1})^n\over n!} \underbrace{\int d^4x_1 \cdots d^4x_n}_{t_{\rm out}\,\ge\, t_n\,\ge\, \cdots\, \ge\, t_1\,\ge\, t_{\rm in}}\, \mathcal{T}\left\{ H_{\rm int}(x_1)H_{\rm int}(x_2)\cdots H_{\rm int}(x_n) \right\}\mid\Psi_{\rm in}\rangle. }[/math]
Note that the time ordering was reversed in the scalar product.
See also
- Schwinger–Dyson equation
- Magnus series
- Peano–Baker series
- Picard iteration
References
- ↑ Sakurai, Modern Quantum mechanics, 2.1.10
- ↑ Sakurai, Modern Quantum mechanics, 2.1.12
- ↑ Sakurai, Modern Quantum mechanics, 2.1.11
- ↑ Sakurai, Modern Quantum mechanics, 2.1 pp. 69-71
- ↑ Sakurai, Modern Quantum Mechanics, 2.1.33, pp. 72
- ↑ Tong 3.20, http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
- ↑ Dyson (1949), "The S-matrix in quantum electrodynamics", Physical Review 75 (11): 1736–1755, doi:10.1103/PhysRev.75.1736, Bibcode: 1949PhRv...75.1736D, https://journals.aps.org/pr/abstract/10.1103/PhysRev.75.1736
- Charles J. Joachain, Quantum collision theory, North-Holland Publishing, 1975, ISBN:0-444-86773-2 (Elsevier)
Original source: https://en.wikipedia.org/wiki/Dyson series.
Read more |