Repairing Classic Sound Cards

Sound hardware has been built into PC motherboards for so long now it’s difficult to remember the days when a sound card was an expensive add-on peripheral. By the mid to late 1990s they were affordable and ubiquitous enough to be everywhere, but three decades later some of them are starting to fail. [Necroware] takes us through the repair of a couple of Creative Labs Sound Blaster 16s, which were the card to have back then.

The video below is a relaxed look at typical problems afflicting second-hand cards with uncertain pasts. There’s a broken PCB trace on the first one, which receives a neat repair. The second one has a lot more wrong with it though, and reveals some surprises. We would have found the dead 74 series chips, but we’re not so sure we’d have immediately suspected a resistor network as the culprit.

Watching these cards become sought-after in the 2020s is a little painful for those of us who were there at the time, because it’s certain we won’t be the only ones who cleared out a pile of old ISA cards back in the 2000s. If you find one today and don’t have an ISA slot, worry not, because you can still interface it via your LPC bus.

Continue reading “Repairing Classic Sound Cards”

A Mouse, No Hands!

There are some ideas which someone somewhere has to try. Take [Uri Tuchman]’s foot mouse. It’s a computer mouse for foot operation, but it’s not just a functional block. Instead it’s an ornate inlaid-wood-and-brass affair in the style of a very fancy piece of antique footwear.

The innards of an ordinary USB mouse are placed in something best described as a wooden platform heel, upon which is placed a brass sole with a couple of sections at the front to activate the buttons with the user’s toes. The standout feature is the decoration. With engraving on the brass and inlaid marquetry on the wood, it definitely doesn’t look like any computer peripheral we’ve seen.

The build video is below the break, and we’re treated to all the processes sped up. At the end he uses it in a basic art package and in a piloting game, with varying degrees of succes. We’re guessing it would take a lot of practice to gain a level of dexterity with this thing, but we salute him for being the one who tries it.

This has to be the fanciest peripheral we’ve ever seen, but surprisingly it’s not the first foot mouse we’ve brought you.

Continue reading “A Mouse, No Hands!”

Farewell Economy 7, A Casualty Of The Long Wave Switch-Off

If you paid attention to advertising in 1980s Britain, you were never far from Economy 7. It was the magic way to heat your house for less, using storage heaters which would run at night using cheap electricity, and deliver warmth day-long. Behind it all was an unseen force, a nationwide radio switching signal transmitted using the BBC’s 198 kHz Long Wave service. Now in 2025 the BBC Radio 4 Long Wave service it relies on is to be turned off, rendering thousands of off-peak electricity meters still installed, useless. [Ringway Manchester] is here to tell the tale.

The system was rolled out in the early 1980s, and comprised of a receiver box which sat alongside your regular electricity meter and switched in or out your off-peak circuit. The control signal was phase-modulated onto the carrier, and could convey a series of different energy use programs. 198 kHz had the useful property due to its low frequency of universal coverage, making it the ideal choice. As we’ve reported in the past the main transmitter at Droitwich is to be retired due to unavailability of the high-power vacuum tubes it relies on, so now time’s up for Economy 7 too. The electricity companies are slow on the uptake despite years of warning, so there’s an unseemly rush to replace those old meters with new smart meters. The video is below the break.

The earliest of broadcast bands may be on the way out, but it’s not entirely over. There might even be a new station on the dial for some people.

Continue reading “Farewell Economy 7, A Casualty Of The Long Wave Switch-Off”

Everyone’s Talking GPMI, Should You?

The tech press has been full of announcements over the last day or two regarding GPMI. It’s a new standard with the backing of a range of Chinese hardware companies, for a high-speed digital video interface to rival HDMI. The Chinese semiconductor company HiSilicon have a whitepaper on the subject (Chinese language, Google Translate link), promising a tremendously higher data rate than HDMI, power delivery well exceeding that of USB-C, and interestingly, bi-directional data transfer. Is HDMI dead? Probably not, but the next few years will bring us some interesting hardware as they respond to this upstart.

Reading through pages of marketing from all over the web on this topic, it appears to be an early part of the push for 8k video content. There’s a small part of us that wonders just how far we can push display resolution beyond that of our eyes without it becoming just a marketing gimmick, but it is true to say that there is demand for higher-bandwidth interfaces. Reports mention two plug styles: a GPMI-specific one and a USB-C one. We expect the latter to naturally dominate. In terms of adoption, though, and whether users might find themselves left behind with the wrong interface, we would expect that far from needing to buy new equipment, we’ll find that support comes gradually with fallback to existing standards such as DisplayPort over USB-C, such that we hardly notice the transition.

Nearly a decade ago we marked the passing of VGA. We don’t expect to be doing the same for HDMI any time soon in the light of GPMI.

Ask Hackaday: Vibe Coding

Vibe coding is the buzzword of the moment. What is it? The practice of writing software by describing the problem to an AI large language model and using the code it generates. It’s not quite as simple as just letting the AI do your work for you because the developer is supposed to spend time honing and testing the result, and its proponents claim it gives a much more interactive and less tedious coding experience. Here at Hackaday, we are pleased to see the rest of the world catch up, because back in 2023, we were the first mainstream hardware hacking news website to embrace it, to deal with a breakfast-related emergency.

Jokes aside, though, the fad for vibe coding is something which should be taken seriously, because it’s seemingly being used in enough places that vibe coded software will inevitably affect our lives.  So here’s the Ask Hackaday: is this a clever and useful tool for making better software more quickly, or a dangerous tool for creating software nobody quite understands, containing bugs which could cause a disaster?

Our approach to writing software has always been one of incrementally building something from the ground up, which satisfies the need. Readers will know that feeling of being in touch with how a project works at all levels, with a nose for immediately diagnosing any problems that might occur. If an AI writes the code for us, the feeling is that we might lose that connection, and inevitably this will lead to less experienced coders quickly getting out of their depth. Is this pessimism, or the grizzled voice of experience? We’d love to know your views in the comments. Are our new AI overlords the new senior developers? Or are they the worst summer interns ever?

Designing A Tone Control Properly

Many years ago, audio equipment came with a tone control, a simple RC filter that would cut or boost the bass to taste. As time passed, this was split into two controls for bass and treble, and then finally into three for bass, mid, and treble. When audiophile fashion shifted towards graphic equalisers, these tone controls were rebranded as “3-band graphic equalisers”, a misleading term if ever we heard one. [Gabriel Dantas] designed one of these circuits, and unlike the simple passive networks found on cheap music centres of old, he’s doing a proper job with active filters.

The write-up is worth a read even if you are not in the market for a fancy tone control, for the basic primer it gives on designing an audio filter. The design contains, as you might expect, a low-pass, a bandpass, and a high-pass filter. These are built around TL072 FET-input op-amps, and an LM386 output stage is added to drive headphones.

The final project is built on a home-made PCB, complete with mains power supply. Audiophiles might demand more exotic parts, but we’re guessing that even with these proletarian components it will still sound pretty good. Probably better than the headphone amplifier featured in a recent project from a Hackaday writer, at least. There’s a build video, below the break.

Continue reading “Designing A Tone Control Properly”

The 1980s Computer, French Style

Should you travel around Europe, you may notice that things in France are ever so slightly different. Not necessarily better or worse, simply that the French prefer to plough their own furrow rather than importing cultural tends from their neighbors.

In the 1980s this was evident in their home computers, because as well as a Minitel terminal in your house, you could have an all-French machine plugged into your TV. [Retro Krazy] has just such a machine — it’s a Matra Hachette Alice 32, and its red plastic case hides hardware any of us would have been proud to own back in the day.

At first sight it appears superficially similar to a Sinclair Spectrum, with its BASIC keywords next to the keys. But under that slightly calculator style AZERTY keyboard is an entirely different architecture, a Motorola 6803. The first Alice computer was a clone of a Radio Shack model, and while this one has no compatibility with its predecessor it retains some silicon choices. On the back are a series of DIN sockets, one for a SCART adapter, and more for serial connectivity and a cassette deck. The overall impression is of a well-engineered machine, even if that red color is a little garish.

The Alice hasn’t appeared here on its own before, but we have taken a look at French retrocomputers here in the past.

Continue reading “The 1980s Computer, French Style”