Full space velocities are computed for a sample of 130 nearby RR Lyrae variables using both ground-based and Hipparcos proper motions. In many cases proper motions for the same star from multiple sources have been averaged to produce approximately a factor of 2 improvement in the transverse space velocity errors. In most cases, this exceeds the accuracy attained using Hipparcos proper motions alone. The velocity ellipsoids computed for halo and thick-disk samples are in agreement with those reported in previous studies. A distinct sample of thin-disk RR Lyrae variables has not been isolated, but there is kinematic evidence for some thin-disk contamination in our thick-disk samples. Using kinematic and spatial parameters, a sample of 21 stars with [Fe/H] < -1.0 and disklike kinematics have been isolated. From their kinematics and spatial distribution we conclude that these stars represent a sample of RR Lyrae variables in the metal-weak tail of the thick disk that extends to [Fe/H] = -2.05. In the halo samples, the distribution of V velocities is not Gaussian, even when the metal-weak thick-disk stars are removed. Possibly related, a plot of U and W velocities as a function of V velocity for the kinematically unbiased halo sample shows some curious structure. The cause of these kinematic anomalies is not clear. In addition, systematic changes to the distance scale within the range of currently accepted values of Mv(RR) are shown to significantly change the calculated halo kinematics. Fainter values of Mv(RR), such as those obtained by statistical parallax (∼0.60 to 0.70 at [Fe/H] = -1.9), result in local halo kinematics similar to those reported in independent studies of halo kinematics, while brighter values of Mv(RR), such as those obtained through recent analysis of Hipparcos subdwarf parallaxes (∼0.30 to 0.40 at [Fe/H] = -1.9), result in a halo with retrograde rotation and significantly enlarged velocity dispersions.
The American Astronomical Society (AAS), established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. Its membership of about 7,000 individuals also includes physicists, mathematicians, geologists, engineers, and others whose research and educational interests lie within the broad spectrum of subjects comprising contemporary astronomy. The mission of the AAS is to enhance and share humanity's scientific understanding of the universe.
The Institute of Physics (IOP) is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.
A publishing partnership
The Astronomical Journal is an open access journal publishing original astronomical research, with an emphasis on significant scientific results derived from observations. Publications in AJ include descriptions of data capture, surveys, analysis techniques, astronomical interpretation, instrumentation, and software and computing.
Remembering former AJ editor, Paul W. Hodge (1934–2019)
GOLD OPEN ACCESS FROM 1 JANUARY 2022
Konstantin Batygin and Michael E. Brown 2016 AJ 151 22
Recent analyses have shown that distant orbits within the scattered disk population of the Kuiper Belt exhibit an unexpected clustering in their respective arguments of perihelion. While several hypotheses have been put forward to explain this alignment, to date, a theoretical model that can successfully account for the observations remains elusive. In this work we show that the orbits of distant Kuiper Belt objects (KBOs) cluster not only in argument of perihelion, but also in physical space. We demonstrate that the perihelion positions and orbital planes of the objects are tightly confined and that such a clustering has only a probability of 0.007% to be due to chance, thus requiring a dynamical origin. We find that the observed orbital alignment can be maintained by a distant eccentric planet with mass ≳10 m⊕ whose orbit lies in approximately the same plane as those of the distant KBOs, but whose perihelion is 180° away from the perihelia of the minor bodies. In addition to accounting for the observed orbital alignment, the existence of such a planet naturally explains the presence of high-perihelion Sedna-like objects, as well as the known collection of high semimajor axis objects with inclinations between 60° and 150° whose origin was previously unclear. Continued analysis of both distant and highly inclined outer solar system objects provides the opportunity for testing our hypothesis as well as further constraining the orbital elements and mass of the distant planet.
Alexander W. Raymond et al 2024 AJ 168 130
The first very long baseline interferometry (VLBI) detections at 870 μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19 μas. The Allan deviation of the visibility phase at 870 μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870 μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time.
Ryan S. Park et al 2021 AJ 161 105
The planetary and lunar ephemerides called DE440 and DE441 have been generated by fitting numerically integrated orbits to ground-based and space-based observations. Compared to the previous general-purpose ephemerides DE430, seven years of new data have been added to compute DE440 and DE441, with improved dynamical models and data calibration. The orbit of Jupiter has improved substantially by fitting to the Juno radio range and Very Long Baseline Array (VLBA) data of the Juno spacecraft. The orbit of Saturn has been improved by radio range and VLBA data of the Cassini spacecraft, with improved estimation of the spacecraft orbit. The orbit of Pluto has been improved from use of stellar occultation data reduced against the Gaia star catalog. The ephemerides DE440 and DE441 are fit to the same data set, but DE441 assumes no damping between the lunar liquid core and the solid mantle, which avoids a divergence when integrated backward in time. Therefore, DE441 is less accurate than DE440 for the current century, but covers a much longer duration of years −13,200 to +17,191, compared to DE440 covering years 1550–2650.
Patryk Sofia Lykawka and Takashi Ito 2023 AJ 166 118
The orbits of trans-Neptunian objects (TNOs) can indicate the existence of an undiscovered planet in the outer solar system. Here we used N-body computer simulations to investigate the effects of a hypothetical Kuiper Belt planet (KBP) on the orbital structure of TNOs in the distant Kuiper Belt beyond ∼50 au. We used observations to constrain model results, including the well-characterized Outer Solar System Origins Survey (OSSOS). We determined that an Earth-like planet (m ∼ 1.5–3 M⊕) located on a distant (semimajor axis a ∼ 250–500 au, perihelion q ∼ 200 au) and inclined (i ∼ 30°) orbit can explain three fundamental properties of the distant Kuiper Belt: a prominent population of TNOs with orbits beyond Neptune's gravitational influence (i.e., detached objects with q > 40 au), a significant population of high-i objects (i > 45°), and the existence of some extreme objects with peculiar orbits (e.g., Sedna). Furthermore, the proposed KBP is compatible with the existence of identified gigayear-stable TNOs in the 2:1, 5:2, 3:1, 4:1, 5:1, and 6:1 Neptunian mean motion resonances. These stable populations are often neglected in other studies. We predict the existence of an Earth-like planet and several TNOs on peculiar orbits in the outer solar system, which can serve as observationally testable signatures of the putative planet's perturbations.
Adam G. Riess et al 1998 AJ 116 1009
We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 ≤ z ≤ 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (ΩM), the cosmological constant (i.e., the vacuum energy density, ΩΛ), the deceleration parameter (q0), and the dynamical age of the universe (t0). The distances of the high-redshift SNe Ia are, on average, 10%–15% farther than expected in a low mass density (ΩM = 0.2) universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., ΩΛ > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than ΩM ≥ 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8 σ and 3.9 σ confidence levels, and with ΩΛ > 0 at the 3.0 σ and 4.0 σ confidence levels, for two different fitting methods, respectively. Fixing a "minimal" mass density, ΩM = 0.2, results in the weakest detection, ΩΛ > 0 at the 3.0 σ confidence level from one of the two methods. For a flat universe prior (ΩM + ΩΛ = 1), the spectroscopically confirmed SNe Ia require ΩΛ > 0 at 7 σ and 9 σ formal statistical significance for the two different fitting methods. A universe closed by ordinary matter (i.e., ΩM = 1) is formally ruled out at the 7 σ to 8 σ confidence level for the two different fitting methods. We estimate the dynamical age of the universe to be 14.2 ± 1.7 Gyr including systematic uncertainties in the current Cepheid distance scale. We estimate the likely effect of several sources of systematic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these effects appear to reconcile the data with ΩΛ = 0 and q0 ≥ 0.
Jean-Luc Margot et al 2023 AJ 166 206
We conducted a search for narrowband radio signals over four observing sessions in 2020–2023 with the L-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. We pointed the telescope in the directions of 62 TESS Objects of Interest, capturing radio emissions from a total of ∼11,680 stars and planetary systems in the ∼9' beam of the telescope. All detections were either automatically rejected or visually inspected and confirmed to be of anthropogenic nature. We also quantified the end-to-end efficiency of radio SETI pipelines with a signal injection and recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected signals over the usable frequency range of the receiver and 98.7% of the injections when regions of dense radio frequency interference are excluded. In another pipeline that uses incoherent sums of 51 consecutive spectra, the recovery rate is ∼15 times smaller at ∼6%. The pipeline efficiency affects calculations of transmitter prevalence and SETI search volume. Accordingly, we developed an improved Drake figure of merit and a formalism to place upper limits on transmitter prevalence that take the pipeline efficiency and transmitter duty cycle into account. Based on our observations, we can state at the 95% confidence level that fewer than 6.6% of stars within 100 pc host a transmitter that is continuously transmitting a narrowband signal with an equivalent isotropic radiated power (EIRP) > 1013 W. For stars within 20,000 ly, the fraction of stars with detectable transmitters (EIRP > 5 × 1016 W) is at most 3 × 10−4. Finally, we showed that the UCLA SETI pipeline natively detects the signals detected with AI techniques by Ma et al.
Andrej Prša et al 2016 AJ 152 41
In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.
Nikolaos Georgakarakos et al 2024 AJ 168 224
In this work we revisit the problem of the dynamical stability of hierarchical triple systems with applications to circumbinary planetary orbits. We derive critical semimajor axes based on simulating and analyzing the dynamical behavior of 3 × 108 binary star–planet configurations. For the first time, three-dimensional and eccentric planetary orbits are considered. We explore systems with a variety of binary and planetary mass ratios, binary and planetary eccentricities from 0 to 0.9, and orbital mutual inclinations ranging from 0° to 180°. Planetary masses range between the size of Mercury and the lower fusion boundary (approximately 13 Jupiter masses). The stability of each system is monitored over 106 planetary orbital periods. We provide empirical expressions in the form of multidimensional, parameterized fits for two borders that separate dynamically stable, unstable, and mixed zones. In addition, we offer a machine learning model trained on our data set as an alternative tool for predicting the stability of circumbinary planets. Both the empirical fits and the machine learning model are tested for their predictive capabilities against randomly generated circumbinary systems with very good results. The empirical formulae are also applied to the Kepler and TESS circumbinary systems, confirming that many planets orbit their host stars close to the stability limit of those systems. Finally, we present a REST application programming interface with a web-based application for convenient access to our simulation data set.
Nancy Remage Evans et al 2024 AJ 168 221
Cepheid masses continue to be important tests of evolutionary tracks for intermediate-mass stars as well as important predictors of their future fate. For systems where the secondary is a B star, Hubble Space Telescope ultraviolet spectra have been obtained. From these spectra a temperature can be derived, and from this a mass of the companion M2. Once Gaia DR4 is available, proper motions can be used to determine the inclination of the orbit. Combining mass of the companion, M2, the mass function from the ground-based orbit of the Cepheid and the inclination produces the mass of the Cepheid, M1. The Cepheid system FN Vel is used here to demonstrate this approach and what limits can be put on the Cepheid mass for inclination between 50° and 130°.
Casey L. Brinkman et al 2024 AJ 168 281
Planets and the stars they orbit are born from the same cloud of gas and dust, and the primordial compositions of rocky exoplanets have been assumed to have iron and refractory abundance ratios consistent with their host star. To test this assumption, we modeled the interior iron-to-rock ratio of 20 super-Earth-sized (1–1.8 R⊕) exoplanets around stars with homogeneously measured stellar parameters. We computed the core mass fraction (CMF) for each planet and an equivalent "core mass fraction" for each host star based on its Fe and Mg abundances. We then fit a linear correlation using two methods (ordinary least squares and orthogonal distance regression) between planetary and stellar CMF, obtaining substantially different slopes between these two methods (m = 1.3 ± 1.0 and m = 5.6 ± 1.6, respectively). Additionally, we find that 75% of planets have a CMF consistent with their host star to within 1σ, and do not identify a distinct population of high-density super-Mercuries. Overall, we conclude that current uncertainties in observational data and differences in modeling methods prevent definitive conclusions about the relationship between planet and host-star chemical compositions.
Mengqi Jin et al 2024 AJ 168 280
KIC 6362386 is an eclipsing binary system that exhibits both γ Doradus (γ Dor)–type pulsations and starspots. In this study, we investigated this binary system using the Kepler photometry and the spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. After employing the PHOEBE program for light-curve and radial-velocity-curve synthesis, analyses reveal that the binary is a circle (e ∼ 0.0006), has a small mass ratio (q ∼ 0.311), and is a detached system consisting of an F-type primary star and an M-type secondary star with masses and radii of M1 = 1.43 ± 0.13 M⊙, R1 = 1.68 ± 0.08 R⊙ and M2 = 0.44 ± 0.18 M⊙, R2 = 0.46 ± 0.06 R⊙, respectively. Utilizing the Padova isochrone, we estimate the age of the binary system to be Gyr. By analyzing the out-of-eclipse residuals, we identify variations in the residuals attributed to both starspots and stellar pulsations. The autocorrelation function analysis indicates the decay time of starspots is approximately 37 days with the rotation period aligning with the orbital period. Considering the masses, radii, and positions of the two components on the Hertzsprung–Russell diagram, we deduce that the γ Dor–type g-mode pulsations came from the primary star where the main frequency is 0.1642c/d. Consequently, KIC 6362386 becomes a valuable target for the investigation of γ Dor–type pulsations and asteroseismology in a binary system.
Stephen R. Kane and Jennifer A. Burt 2024 AJ 168 279
The continuing exploration of neighboring planetary systems is providing deeper insights into the relative prevalence of various system architectures, particularly with respect to the solar system. However, a full assessment of the dynamical feasibility of possible terrestrial planets within the habitable zones (HZs) of nearby stars requires detailed knowledge of the masses and orbital solutions of any known planets within these systems. Moreover, the presence of as-yet undetected planets in or near the HZ will be crucial for providing a robust target list for future direct imaging surveys. In this work, we quantify the distribution of uncertainties on planetary masses and semimajor axes for 1062 confirmed planets, finding median uncertainties of 11.1% and 2.2%, respectively. We show the dependence of these uncertainties on stellar mass and orbital period and discuss the effects of these uncertainties on dynamical analyses and the locations of mean motion resonance. We also calculate the expected radial velocity (RV) semiamplitude for a Neptune-mass planet in the middle of the HZ for each of the proposed Habitable Worlds Observatory target stars. We find that for more than half of these stars, the RV semiamplitude is less than 1.5 m s−1 rendering them unlikely to be detected in archival RV data sets and highlighting the need for further observations to understand the dynamical viability of the HZ for these systems. We provide specific recommendations regarding stellar characterization and RV survey strategies that work toward the detection of presently unseen perturbers within the HZ.
Komal Chand et al 2024 AJ 168 278
We characterize blue straggler stars (BSSs) and yellow straggler stars (YSSs) of the open cluster (OC) Berkeley 39 using multiwavelength observations including the Swift/Ultraviolet and Optical Telescope (UVOT). Our analysis also makes use of ultraviolet (UV) data from Galaxy Evolution Explorer, optical data from Gaia DR3 and Panoramic Survey Telescope and Rapid Response System, and infrared data from Two Micron All Sky Survey, Spitzer/IRAC, and Wide-field Infrared Survey Explorer. Berkeley 39 is a ∼6 Gyr old Galactic OC located at a distance of ∼4200 pc. We identify 729 sources as cluster members utilizing a machine-learning algorithm, ML-MOC, on Gaia DR3 data. Of these, 17 sources are classified as BSS candidates and four as YSS candidates. We construct multiwavelength spectral energy distributions (SEDs) of 16 BSS and two YSS candidates, within the Swift/UVOT field, to analyze their properties. Out of these, eight BSS candidates and both the YSS candidates are successfully fitted with single-component SEDs. Five BSS candidates show marginal excess in the near-UV (NUV; fractional residual <0.3 in all but one UVOT filter), whereas three BSS candidates show moderate to significant excess in the NUV (fractional residual >0.3 in at least two UVOT filters). We present the properties of the BSS and YSS candidates, estimated based on the SED fits.
Xilong Liang et al 2024 AJ 168 277
With Gaia, APOGEE, GALAH, and LAMOST data, we investigate the positional, kinematic, chemical, and age properties of nine moving groups in the solar neighborhood. We find that each moving group has a distinct distribution in the velocity space in terms of its metallicity, α abundance, and age. Comparison of the moving groups with their underlying background stars suggests that they have experienced the enhanced, prolonged star formation. We infer that any dynamical effects that gathered stars as a moving group in the velocity space also worked for gas. We propose for the first time that the ensuing newborn stars from such gas inherited the kinematic feature from the gas, shaping the current stellar velocity distributions of the groups. Our findings improve the understanding of the origins and evolutionary histories of moving groups in the solar neighborhood.
Casey L. Brinkman et al 2024 AJ 168 281
Planets and the stars they orbit are born from the same cloud of gas and dust, and the primordial compositions of rocky exoplanets have been assumed to have iron and refractory abundance ratios consistent with their host star. To test this assumption, we modeled the interior iron-to-rock ratio of 20 super-Earth-sized (1–1.8 R⊕) exoplanets around stars with homogeneously measured stellar parameters. We computed the core mass fraction (CMF) for each planet and an equivalent "core mass fraction" for each host star based on its Fe and Mg abundances. We then fit a linear correlation using two methods (ordinary least squares and orthogonal distance regression) between planetary and stellar CMF, obtaining substantially different slopes between these two methods (m = 1.3 ± 1.0 and m = 5.6 ± 1.6, respectively). Additionally, we find that 75% of planets have a CMF consistent with their host star to within 1σ, and do not identify a distinct population of high-density super-Mercuries. Overall, we conclude that current uncertainties in observational data and differences in modeling methods prevent definitive conclusions about the relationship between planet and host-star chemical compositions.
Mengqi Jin et al 2024 AJ 168 280
KIC 6362386 is an eclipsing binary system that exhibits both γ Doradus (γ Dor)–type pulsations and starspots. In this study, we investigated this binary system using the Kepler photometry and the spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. After employing the PHOEBE program for light-curve and radial-velocity-curve synthesis, analyses reveal that the binary is a circle (e ∼ 0.0006), has a small mass ratio (q ∼ 0.311), and is a detached system consisting of an F-type primary star and an M-type secondary star with masses and radii of M1 = 1.43 ± 0.13 M⊙, R1 = 1.68 ± 0.08 R⊙ and M2 = 0.44 ± 0.18 M⊙, R2 = 0.46 ± 0.06 R⊙, respectively. Utilizing the Padova isochrone, we estimate the age of the binary system to be Gyr. By analyzing the out-of-eclipse residuals, we identify variations in the residuals attributed to both starspots and stellar pulsations. The autocorrelation function analysis indicates the decay time of starspots is approximately 37 days with the rotation period aligning with the orbital period. Considering the masses, radii, and positions of the two components on the Hertzsprung–Russell diagram, we deduce that the γ Dor–type g-mode pulsations came from the primary star where the main frequency is 0.1642c/d. Consequently, KIC 6362386 becomes a valuable target for the investigation of γ Dor–type pulsations and asteroseismology in a binary system.
Stephen R. Kane and Jennifer A. Burt 2024 AJ 168 279
The continuing exploration of neighboring planetary systems is providing deeper insights into the relative prevalence of various system architectures, particularly with respect to the solar system. However, a full assessment of the dynamical feasibility of possible terrestrial planets within the habitable zones (HZs) of nearby stars requires detailed knowledge of the masses and orbital solutions of any known planets within these systems. Moreover, the presence of as-yet undetected planets in or near the HZ will be crucial for providing a robust target list for future direct imaging surveys. In this work, we quantify the distribution of uncertainties on planetary masses and semimajor axes for 1062 confirmed planets, finding median uncertainties of 11.1% and 2.2%, respectively. We show the dependence of these uncertainties on stellar mass and orbital period and discuss the effects of these uncertainties on dynamical analyses and the locations of mean motion resonance. We also calculate the expected radial velocity (RV) semiamplitude for a Neptune-mass planet in the middle of the HZ for each of the proposed Habitable Worlds Observatory target stars. We find that for more than half of these stars, the RV semiamplitude is less than 1.5 m s−1 rendering them unlikely to be detected in archival RV data sets and highlighting the need for further observations to understand the dynamical viability of the HZ for these systems. We provide specific recommendations regarding stellar characterization and RV survey strategies that work toward the detection of presently unseen perturbers within the HZ.
Komal Chand et al 2024 AJ 168 278
We characterize blue straggler stars (BSSs) and yellow straggler stars (YSSs) of the open cluster (OC) Berkeley 39 using multiwavelength observations including the Swift/Ultraviolet and Optical Telescope (UVOT). Our analysis also makes use of ultraviolet (UV) data from Galaxy Evolution Explorer, optical data from Gaia DR3 and Panoramic Survey Telescope and Rapid Response System, and infrared data from Two Micron All Sky Survey, Spitzer/IRAC, and Wide-field Infrared Survey Explorer. Berkeley 39 is a ∼6 Gyr old Galactic OC located at a distance of ∼4200 pc. We identify 729 sources as cluster members utilizing a machine-learning algorithm, ML-MOC, on Gaia DR3 data. Of these, 17 sources are classified as BSS candidates and four as YSS candidates. We construct multiwavelength spectral energy distributions (SEDs) of 16 BSS and two YSS candidates, within the Swift/UVOT field, to analyze their properties. Out of these, eight BSS candidates and both the YSS candidates are successfully fitted with single-component SEDs. Five BSS candidates show marginal excess in the near-UV (NUV; fractional residual <0.3 in all but one UVOT filter), whereas three BSS candidates show moderate to significant excess in the NUV (fractional residual >0.3 in at least two UVOT filters). We present the properties of the BSS and YSS candidates, estimated based on the SED fits.
Xilong Liang et al 2024 AJ 168 277
With Gaia, APOGEE, GALAH, and LAMOST data, we investigate the positional, kinematic, chemical, and age properties of nine moving groups in the solar neighborhood. We find that each moving group has a distinct distribution in the velocity space in terms of its metallicity, α abundance, and age. Comparison of the moving groups with their underlying background stars suggests that they have experienced the enhanced, prolonged star formation. We infer that any dynamical effects that gathered stars as a moving group in the velocity space also worked for gas. We propose for the first time that the ensuing newborn stars from such gas inherited the kinematic feature from the gas, shaping the current stellar velocity distributions of the groups. Our findings improve the understanding of the origins and evolutionary histories of moving groups in the solar neighborhood.
Nicholas Scarsdale et al 2024 AJ 168 276
We present a JWST Near-InfraRed Spectrograph (NIRSpec) transmission spectrum of the super-Earth exoplanet L 98-59 c. This small (Rp = 1.385 ± 0.085R⊕, Mp = 2.22 ± 0.26 R⊕), warm (Teq = 553 K) planet resides in a multiplanet system around a nearby, bright (J = 7.933) M3V star. We find that the transmission spectrum of L 98-59 c is featureless at the precision of our data. We achieve precisions of 22 ppm in NIRSpec G395H's NRS1 detector and 36 ppm in the NRS2 detector at a resolution R ∼ 200 (30 pixel wide bins). At this level of precision, we are able rule out primordial H2–He atmospheres across a range of cloud pressure levels up to at least ∼0.1 mbar. By comparison to atmospheric forward models, we also rule out atmospheric metallicities below ∼300× solar at 3σ (or, equivalently, atmospheric mean molecular weights below ∼10 g mol−1). We also rule out pure methane atmospheres. The remaining scenarios that are compatible with our data include a planet with no atmosphere at all, or higher-mean-molecular-weight atmospheres, such as CO2- or H2O-rich atmospheres. This study adds to a growing body of evidence suggesting that planets ≲1.5 R⊕ lack extended atmospheres.
Zun Luo et al 2024 AJ 168 275
Precision measurements in astronomy require stringent control of systematics such as those arising from imperfect correction of sensor effects. In this work, we develop a parametric method to model the wavelength dependence of pixel response nonuniformity (PRNU) for a laser-annealed backside-illuminated charge-coupled device. The model accurately reproduces the PRNU patterns of flat-field images taken at nine wavelengths from 290 to 950 nm, leaving the rms residuals no more than 0.2% in most cases. By removing the large-scale nonuniformity in the flat fields, the rms residuals are further reduced. This model fitting approach gives more accurate predictions of the PRNU than cubic-spline interpolation does with fewer free parameters. It can be applied to make PRNU corrections for individual objects according to their spectral energy distribution to reduce the photometry errors caused by the wavelength-dependent PRNU, if sub-percent level precision is required.
A. H. Sheikh and Biman J. Medhi 2024 AJ 168 274
We present a statistical, photometric, and spectral energy distribution (SED) analysis of the poorly studied old open cluster: NGC 2243, to characterize its blue straggler star (BSS) population. We applied ensemble-based unsupervised machine learning methods to estimate the membership probabilities using Gaia Data Release 3 (DR3) astrometric data. NGC 2243 is an open cluster that is 3.67 Gyr old with a metallicity of −0.375 dex, situated at a distance of 3.65 kpc. By analyzing the position of cluster members on the color–magnitude diagram using MIST isochrones, we have identified 12 potential BSSs in NGC 2243. We fitted the radial surface density profile and investigated the dynamical state and mass segregation effect of the cluster. It is found that the BSSs are significantly concentrated within the central region. We used data from Swift/UVOT, Gaia DR3, Pan-STARRS1 DR2, 2MASS, and WISE to fit the SEDs of the 12 identified BSSs using VOSA. We estimated the masses of the BSSs from the Hertzsprung–Russell diagram and found that they ranged from 1.25 to 2.22 M☉. Consequently, we concluded that the BSSs likely gained 0.11–1.08 M☉ through the mass transfer or merger channels. We discovered a hot companion associated with one BSS candidate, which has a temperature of 19,000 K, a luminosity of 0.55 L☉, and a radius of 0.065 R☉. The hot companion is probably a white dwarf, with its mass estimated to be approximately 0.18–0.20 M☉ and an age of 186 Myr, suggesting it is a post-mass-transfer (Case A or Case B) system.
Lia Marta Bernabò et al 2024 AJ 168 273
We report on the discovery of a transiting giant planet around the 3500 K M3-dwarf star TOI-6383A located 172 pc from Earth. It was detected by the Transiting Exoplanet Survey Satellite and confirmed by a combination of ground-based follow-up photometry and precise radial velocity measurements. This planet has an orbital period of ∼1.791 days, a mass of 1.040 ± 0.094 MJ, and a radius of , resulting in a mean bulk density of g cm−3. TOI-6383A has an M dwarf companion star, TOI-6383B, which has a stellar effective temperature of Teff ∼ 3100 K and a projected orbital separation of 3126 au. TOI-6383A is a low-mass dwarf star hosting a giant planet and is an intriguing object for planetary evolution studies due to its high planet-to-star mass ratio. This discovery is part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) Survey, intending to provide robust and accurate estimates of the occurrence of GEMS and the statistics on their physical and orbital parameters. This paper presents an interesting addition to the small number of confirmed GEMS, particularly notable since its formation necessitates massive, dust-rich protoplanetary discs and high accretion efficiency (>10%).
Atila Poro et al 2024 AJ 168 272
Photometric observations were made with standard filters in four observatories for 10 contact binary systems. We analyzed the orbital period variations of the systems and found that six of them show long-term changes. The increase in the orbital period of the J07, N65, and PU Vir systems is caused by mass transfer, and the reduction in the orbital period of the J05, LO Psc, and N49 systems is caused by the combination of angular momentum loss and mass transfer. The first light-curve analysis was performed with the PHysics Of Eclipsing BinariEs Python code and Markov Chain Monte Carlo. We discussed the accuracy of photometric mass ratio estimates for contact binary systems with total and partial eclipses compared to spectroscopic results. We also compared our mass ratio findings to a recent method that estimates mass ratios from the light curve's third derivative. Then, we also discussed this new mass ratio estimate method for photometric data. The systems' positions were displayed in 18 empirical parameter relationships. According to the light-curve analysis and estimation of absolute parameters, systems BE Mus, J07, J08, N49, and N65 are A subtypes, and the others are W subtypes.