An internally-actuated mechanism for endoscopic capsules to reduce capsule retention: proof of concept

Document Type : Research Paper

Authors

1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran

2 Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Endoscopic capsules are the only medical diagnosis devices that can examine the small intestine entirely. However, capsule retention is a critical side-effect of endoscopic capsules, which has remained unsolved. We aimed to reduce capsule retention probability by controlling the capsule’s orientation. In this research, a novel endoscopic capsule equipped with two internal electric motors is designed. This design concept is based on the capsule’s actuation using its motors’ reaction torques. The theoretical procedure and simulation show that the capsule could not reach every orientation using only one internal motor. It is shown that an orientation-controllable capsule needs two motors, which are necessary and sufficient for controlling the orientation of the active capsule in the intestine. Computer simulations and experiments have proven the desired performance and realization of the actuation mechanism. The developed actuation tool can align the capsule with the intestine; thus, the retained capsule can escape from where it is blocked.

Keywords

Main Subjects

[1]          G. Iddan, G. Meron, A. Glukhovsky, P. Swain, Wireless capsule endoscopy, Nature, Vol. 405, No. 6785, pp. 417-417, 2000.
[2]          S. Y. Lee, J. Y. Lee, Y. J. Lee, K. S. Park, Natural elimination of a video capsule after retention for 1 year in a patient with small bowel crohn disease: A case report, Medicine, Vol. 98, No. 43, 2019.
[3]          A. Slesser, R. Wharton, G. Smith, G. Buchanan, Systematic review of small bowel diaphragm disease requiring surgery, Colorectal Disease, Vol. 14, No. 7, pp. 804-813, 2012.
[4]          Z. Han, W. Qiao, X. Ai, A. Li, Z. Chen, J. Zhang, T. Wan, X. Feng, S. Liu, F. Zhi, Risk factors for surgery in patients with retention of endoscopic capsule, Scandinavian Journal of Gastroenterology, Vol. 53, No. 1, pp. 107-113, 2018.
[5]          E. Rondonotti, J. M. Herrerias, M. Pennazio, A. Caunedo, M. Mascarenhas-Saraiva, R. de Franchis, Complications, limitations, and failures of capsule endoscopy: a review of 733 cases, Gastrointestinal endoscopy, Vol. 62, No. 5, pp. 712-716, 2005.
[6]          P. Valdastri, M. Simi, R. J. Webster III, Advanced technologies for gastrointestinal endoscopy, Annual review of biomedical engineering, Vol. 14, pp. 397-429, 2012.
[7]          D. Ye, J. Xue, S. Yuan, F. Zhang, S. Song, J. Wang, M. Q.-H. Meng, Design and control of a magnetically-actuated capsule robot with biopsy function, IEEE Transactions on Biomedical Engineering, Vol. 69, No. 9, pp. 2905-2915, 2022.
[8]          M. C. Hoang, V. H. Le, K. T. Nguyen, V. D. Nguyen, J. Kim, E. Choi, S. Bang, B. Kang, J.-O. Park, C.-S. Kim, A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch, Micromachines, Vol. 11, No. 1, pp. 98, 2020.
[9]          M. N. Huda, H. Yu, S. Cang, Robots for minimally invasive diagnosis and intervention, Robotics and Computer-Integrated Manufacturing, Vol. 41, pp. 127-144, 2016.
[10]        S. Sarker, B. Wankum, J. Shimizu, R. Jones, B. Terry, A factorial approach for optimizing the design parameters of a tissue attachment mechanism for drug delivery, IEEE Transactions on Biomedical Engineering, Vol. 69, No. 1, pp. 32-41, 2021.
[11]        L. Liu, S. Towfighian, A. Hila, A review of locomotion systems for capsule endoscopy, IEEE reviews in biomedical engineering, Vol. 8, pp. 138-151, 2015.
[12]        F. Munoz, G. Alici, H. Zhou, W. Li, M. Sitti, Analysis of magnetic interaction in remotely controlled magnetic devices and its application to a capsule robot for drug delivery, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 1, pp. 298-310, 2017.
[13]        N. Shamsudhin, V. I. Zverev, H. Keller, S. Pane, P. W. Egolf, B. J. Nelson, A. M. Tishin, Magnetically guided capsule endoscopy, Medical physics, Vol. 44, No. 8, pp. e91-e111, 2017.
[14]        H. Li, G. Yan, G. Ma, An active endoscopic robot based on wireless power transmission and electromagnetic localization, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 4, No. 4, pp. 355-367, 2008.
[15]        P. S. Boroujeni, H. N. Pishkenari, H. Moradi, G. Vossoughi, Model-aided real-time localization and parameter identification of a magnetic endoscopic capsule using extended Kalman filter, IEEE Sensors Journal, Vol. 21, No. 12, pp. 13667-13675, 2021.
[16]        H. Mateen, R. Basar, A. U. Ahmed, M. Y. Ahmad, Localization of wireless capsule endoscope: A systematic review, IEEE Sensors Journal, Vol. 17, No. 5, pp. 1197-1206, 2017.
[17]        S. Zeising, A. S. Thalmayer, M. Lübke, G. Fischer, J. Kirchner, Localization of Passively Guided Capsule Endoscopes–A Review, IEEE Sensors Journal, 2022.
[18]        S. Joe, D. Lee, H. Kang, B. Kang, J.-O. Park, B. Kim, A micro-tattooing device for capsule endoscope using a Wood's metal triggering mechanism, Mechatronics, Vol. 62, pp. 102259, 2019.
[19]        G. Ciuti, N. Pateromichelakis, M. Sfakiotakis, P. Valdastri, A. Menciassi, D. Tsakiris, P. Dario, A wireless module for vibratory motor control and inertial sensing in capsule endoscopy, Sensors and Actuators A: Physical, Vol. 186, pp. 270-276, 2012.
[20]        S. Yim, M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope, IEEE Transactions on Robotics, Vol. 28, No. 1, pp. 183-194, 2011.
[21]        F. Carpi, S. Galbiati, A. Carpi, Controlled navigation of endoscopic capsules: Concept and preliminary experimental investigations, IEEE Transactions on Biomedical Engineering, Vol. 54, No. 11, pp. 2028-2036, 2007.
[22]        J. Gao, G. Yan, Locomotion analysis of an inchworm-like capsule robot in the intestinal tract, IEEE Transactions on Biomedical Engineering, Vol. 63, No. 2, pp. 300-310, 2015.
[23]        M. Rehan, I. Al‐Bahadly, D. G. Thomas, E. Avci, Capsule robot for gut microbiota sampling using shape memory alloy spring, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 16, No. 5, pp. 1-14, 2020.
[24]        M. Quirini, A. Menciassi, S. Scapellato, C. Stefanini, P. Dario, Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract, IEEE/ASME transactions on mechatronics, Vol. 13, No. 2, pp. 169-179, 2008.
[25]        P. Valdastri, R. J. Webster, C. Quaglia, M. Quirini, A. Menciassi, P. Dario, A new mechanism for mesoscale legged locomotion in compliant tubular environments, IEEE Transactions on Robotics, Vol. 25, No. 5, pp. 1047-1057, 2009.
[26]        H. M. Kim, S. Yang, J. Kim, S. Park, J. H. Cho, J. Y. Park, T. S. Kim, E.-S. Yoon, S. Y. Song, S. Bang, Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos), Gastrointestinal endoscopy, Vol. 72, No. 2, pp. 381-387, 2010.
[27]        L. J. Sliker, M. D. Kern, J. A. Schoen, M. E. Rentschler, Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads, Surgical endoscopy, Vol. 26, pp. 2862-2869, 2012.
[28]        I. De Falco, G. Tortora, P. Dario, A. Menciassi, An integrated system for wireless capsule endoscopy in a liquid-distended stomach, IEEE Transactions on Biomedical Engineering, Vol. 61, No. 3, pp. 794-804, 2013.
[29]        G. Bingyong, Y. Liu, B. Rauf, P. Shyam, Self-propelled capsule endoscopy for small-bowel examination: proof-of-concept and model verification, 2020.
[30]        Y. Liu, M. Wiercigroch, E. Pavlovskaia, H. Yu, Modelling of a vibro-impact capsule system, International Journal of Mechanical Sciences, Vol. 66, pp. 2-11, 2013.
[31]        Y. Liu, E. Pavlovskaia, M. Wiercigroch, Z. Peng, Forward and backward motion control of a vibro-impact capsule system, International Journal of Non-Linear Mechanics, Vol. 70, pp. 30-46, 2015.
[32]        C. Lee, H. Choi, G. Go, S. Jeong, S. Y. Ko, J.-O. Park, S. Park, Active locomotive intestinal capsule endoscope (ALICE) system: A prospective feasibility study, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 5, pp. 2067-2074, 2014.
[33]        B. Kim, S. Park, C. Y. Jee, S.-J. Yoon, An earthworm-like locomotive mechanism for capsule endoscopes, in Proceeding of, IEEE, pp. 2997-3002.
[34]        W. Chen, G. Yan, Z. Wang, P. Jiang, H. Liu, A wireless capsule robot with spiral legs for human intestine, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 10, No. 2, pp. 147-161, 2014.
[35]        L. Kim, S. C. Tang, S.-S. Yoo, Prototype modular capsule robots for capsule endoscopies, in Proceeding of, IEEE, pp. 350-354.
[36]        I. Steinbrueck, F. Hagenmüller, Crohn's Stenosis in the Ileum with Video Capsule Retention and Removal by Peranal Single-Balloon Enteroscopy, Video Journal and Encyclopedia of GI Endoscopy, Vol. 1, No. 1, pp. 221-222, 2013.
[37]        P. Glass, E. Cheung, M. Sitti, A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives, IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, pp. 2759-2767, 2008.
[38]        H. Zhou, G. Alici, F. Munoz, A magnetically actuated anchoring system for a wireless endoscopic capsule, Biomedical microdevices, Vol. 18, pp. 1-9, 2016.
[39]        J. Ginsberg, 2008, Engineering dynamics, Cambridge University Press,
[40]        M. Sendoh, K. Ishiyama, K.-I. Arai, Fabrication of magnetic actuator for use in a capsule endoscope, IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3232-3234, 2003.
[41]        Y. Zhang, S. Jiang, X. Zhang, X. Ruan, D. Guo, A variable-diameter capsule robot based on multiple wedge effects, IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 2, pp. 241-254, 2010.
[42]        H. Zhou, G. Alici, T. D. Than, W. Li, Modeling and experimental investigation of rotational resistance of a spiral-type robotic capsule inside a real intestine, IEEE/ASME Transactions On Mechatronics, Vol. 18, No. 5, pp. 1555-1562, 2012.
[43]        J.-S. Kim, I.-H. Sung, Y.-T. Kim, E.-Y. Kwon, D.-E. Kim, Y. Jang, Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application, Tribology Letters, Vol. 22, pp. 143-149, 2006.
[44]        S. H. Kim, H. J. Chun, Capsule endoscopy: Pitfalls and approaches to overcome, Diagnostics, Vol. 11, No. 10, pp. 1765, 2021.
Volume 55, Issue 4
October 2024
Pages 717-729
  • Receive Date: 12 April 2024
  • Revise Date: 14 July 2024
  • Accept Date: 19 August 2024