본문으로 이동

십칠각형

위키백과, 우리 모두의 백과사전.

정십칠각형

기하학에서 십칠각형이 모두 17개인 평면도형이다. 십칠각형의 모든 내각의 합은 2700이며, 정십칠각형의 한 내각은 약 158.82도이다. 정십칠각형은 작도가 가능한 평면도형인데, 이는 17의 삼각함수 값이 사칙연산제곱근만으로 표현이 가능하다는 것을 의미한다. 정십칠각형의 한 변의 길이를 t라고 하면, 정십칠각형의 넓이는 다음 식과 같다.

1796년 가우스는 변의 개수가 서로 다른 페르마 소수의 곱에 2의 거듭제곱을 곱한 형태인 정다각형작도가 가능하다는 것을 보였다. 특히, 가우스는 3월 30일에 정십칠각형의 작도법을 발견하였다.

가우스의 정십칠각형 작도.

같이 보기

[편집]