Hopp til innhold

Berry–Esseens teorem

Fra Wikipedia, den frie encyklopedi

Berry–Esseens teorem er et teorem i matematikk som gir en øvre grense for konvergenshastigheten i sentralgrenseteoremet. Teoremet ble bevist uavhengig av hverandre av Andrew C. Berry i 1941 og Carl-Gustav Esseen i 1942.

Ettersom teoremet ble bevist av to forskjellige matematikere, og deretter ble videreutviklet både av disse og andre, finnes det flere forskjellige formuleringer. En versjon er som følger:

La være uavhengige stokastiske variabler med samme sannsynlighetsfordeling, og anta at , at og at . La videre
være gjennomsnittet av de første variablene. La være den kumulative fordelingsfunksjonen til
,
og være den kumulative fordelingsfunksjonen til den standard normalfordelingen. Da finnes en positiv konstant slik at for alle og så er
.

Her er en universell matematisk konstant, som er kjent som Berry–Esseen-konstanten. Den nøyaktige verdien av konstanten er ikke kjent. I Esseens opprinnelige arbeid gis den en øvre grense på 7,59, som senere har blitt forbedret. Den beste øvre grensen som er kjent i dag er 0,7655 og ble vist av Sjiganov i 1985.[1] På den annen side er det kjent at er større enn .[2]

Referanser

[rediger | rediger kilde]
  1. ^ I. S. Shiganov: Refinement of the upper bound of the constant in the central limit theorem. I: Journal of Soviet Mathematics. 1986, s. 2545–2550.
  2. ^ Gänssler, Stute: Wahrscheinlichkeitstheorie. Springer, Berlin 1977, Eksempel 4.2.16.
Autoritetsdata