US20160191901A1 - 3d image capture apparatus with cover window fiducials for calibration - Google Patents
3d image capture apparatus with cover window fiducials for calibration Download PDFInfo
- Publication number
- US20160191901A1 US20160191901A1 US14/582,255 US201414582255A US2016191901A1 US 20160191901 A1 US20160191901 A1 US 20160191901A1 US 201414582255 A US201414582255 A US 201414582255A US 2016191901 A1 US2016191901 A1 US 2016191901A1
- Authority
- US
- United States
- Prior art keywords
- image sensor
- fiducials
- imaging apparatus
- image
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 238000003384 imaging method Methods 0.000 claims abstract description 25
- 238000010586 diagram Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000008542 thermal sensitivity Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/257—Colour aspects
-
- H04N13/0257—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00057—Operational features of endoscopes provided with means for testing or calibration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00172—Optical arrangements with means for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00174—Optical arrangements characterised by the viewing angles
- A61B1/00177—Optical arrangements characterised by the viewing angles for 90 degrees side-viewing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/24—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
- A61C9/004—Means or methods for taking digitized impressions
- A61C9/0046—Data acquisition means or methods
- A61C9/0053—Optical means or methods, e.g. scanning the teeth by a laser or light beam
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/32—Fiducial marks and measuring scales within the optical system
-
- G06T7/0018—
-
- H04N13/0235—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/51—Housings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H04N5/2252—
-
- H04N5/2253—
-
- H04N5/2256—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0075—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/17—Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/236—Image signal generators using stereoscopic image cameras using a single 2D image sensor using varifocal lenses or mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/246—Calibration of cameras
Definitions
- Three-dimensional (3D) image scanners are typically calibrated after assembly.
- the calibration process permits the scanners to produce accurate 3D measurements of solid objects placed in the field of view of the system.
- the calibration process characterizes the thermal sensitivity of the scanner during operation and removes the thermal-dependent error from 3D measurements.
- a field calibration target can be used to correct a more severe aging-related drift from the initial calibration.
- the field target calibration requires active participation by the user of the scanner, which can be inconvenient and not necessarily used when needed to recalibrate the scanner.
- a first 3D imaging apparatus includes a housing and an image sensor within the housing.
- First and second mirrors are positioned to receive an image from an object external to the housing and provide the image to the image sensor.
- An aperture element having a plurality of apertures is located along an optical path between the object and the image sensor for providing the image along a plurality of optical channels to the image sensor.
- the apparatus also includes a transparent cover positioned within the optical path and having a plurality of fiducials. The depth of field of the apparatus includes the transparent cover along with the fiducials.
- a second 3D imaging apparatus includes a housing and an image sensor within the housing.
- a mirror is positioned to receive an image from an object external to the housing and provide the image to the image sensor.
- An aperture element having a plurality of apertures is located along an optical path between the object and the image sensor for providing the image along a plurality of optical channels to the image sensor.
- the apparatus also includes a transparent cover positioned within the optical path and having a plurality of fiducials. The depth of field of the apparatus includes the transparent cover along with the fiducials.
- FIG. 1 is a side view of a 3D imager with depth of field extension
- FIG. 2 is a diagram illustrating use of two fold mirrors for depth of field extension
- FIG. 3 is a diagram illustrating use of two concave mirrors for depth of field extension
- FIG. 4 is a perspective view of the 3D imager of FIG. 1 ;
- FIG. 5 is an exploded perspective view of the 3D imager of FIG. 1 ;
- FIG. 6 is an exploded side view of the 3D imager of FIG. 1 ;
- FIG. 7 is a side view of an alternative 3D imager with depth of field extension
- FIG. 8 is a perspective view of the 3D imager of FIG. 7 ;
- FIG. 9 is an exploded perspective view of the 3D imager of FIG. 7 ;
- FIG. 10 is a diagram illustrating two optical elements for each optical channel in a 3D imager
- FIG. 11 is a diagram illustrating three optical elements for each optical channel in a 3D imager
- FIG. 12 is a diagram illustrating four optical elements for each optical channel in a 3D imager
- FIG. 13 is a diagram illustrating two image data regions on an image sensor in a 3D imager for obtaining multiple views in a 3D system
- FIG. 14 is a diagram illustrating three image data regions on an image sensor in a 3D imager for obtaining multiple views in a 3D system
- FIG. 15 is a diagram illustrating a first type of cover window fiducials for use relating to calibration
- FIG. 16 is a diagram illustrating a second type of cover window fiducials for use relating to calibration.
- FIG. 17 is a diagram illustrating a third type of cover window fiducials for use relating to calibration.
- Embodiments include using fiducials on a cover window of a 3D scanner for use in calibrating the scanner or checking the calibrated state of the scanner.
- An example of a 3D scanner having a cover window within its depth of field is disclosed in U.S. patent application Ser. No. 14/277,113, entitled “3D Image Capture Apparatus with Depth of Field Extension,” and filed May 14, 2014, which is incorporated herein by reference as if fully set forth.
- Systems to generate 3D images or models based upon image sets from multiple views are disclosed in U.S. Pat. Nos. 7,956,862 and 7,605,817, both of which are incorporated herein by reference as if fully set forth. These systems can be included in a housing providing for hand-held use, and an example of such a housing is disclosed in U.S. Pat. No. D674,091, which is incorporated herein by reference as if fully set forth.
- FIG. 1 is a side view of a 3D imager 10 with depth of field extension through the use of two mirrors.
- System 10 includes a housing 12 , mirrors 18 and 20 , an aperture element 22 , lenses 24 , and an image sensor 28 .
- Housing 12 has an angled tip 17 with mirror 18 secured adjacent an interior surface of the tip.
- a mechanical holder 26 is used to hold mirror 20 , aperture element 22 , and lenses 24 in position over image sensor 28 .
- a circuit board 30 can receive electronic signals from image sensor 28 representing the images and transmit the signals for further processing to generate a 3D model of the object.
- Housing 12 includes a transparent cover 14 and light sources 16 adjacent the cover to illuminate an object to be imaged. In this design, image sensor 28 is positioned substantially parallel to an object plane of the object.
- the imager has a depth of field 32 which includes housing 12 , in particular a bottom surface 13 of the housing.
- the depth of field can alternatively include and extend into the inside of housing 12 .
- imager 10 can be placed directly on (in physical contact with) an object to be imaged, such as on teeth for intra-oral scanning.
- the image plane (image sensor surface plane) 42 is positioned along the horizontal plane with object plane 34 , as shown in FIG. 2 .
- FIGS. 1 and 2 show a configuration using two planar fold mirrors.
- either of the two fold mirrors, or both of the mirrors can be implemented with concave mirrors. If concave mirrors are used, the position of the image sensor can be adjusted to compensate for the focus of the concave mirror and obtain sharp images.
- FIG. 3 illustrates a system using two concave mirrors.
- FIGS. 4-6 are perspective, exploded perspective, and exploded side views, respectively, of 3D imager 10 of FIG. 1 .
- FIG. 5 illustrates apertures 23 in aperture element 22 to create multiple channels. Although three apertures are shown, aperture element 22 can alternatively have two apertures for a two channel system.
- Mirrors 18 and 20 can be aluminum or silver coated on optical glass or metal.
- Mirror 18 can alternatively be a prism, and mirror 20 can alternatively be a planar mirror plate.
- a prism is used for mirror 20 for ease of holding the mirror in place on holder 26 .
- Mirrors 18 and 20 can optionally be one piece of material with mirrors on both ends.
- Mirrors 18 and 20 are preferably positioned at 50° and 40°, respectively, from the image plane. The angles of the mirrors should total 90° for the image sensor to obtain images normal to the target, and each of the angles can thus be adjusted for desired placement in the housing.
- Lenses 24 can include separate lenses for each channel or be a single molded piece of material.
- Aperture element 22 can be a multi-layer metal plate, such as BeCu base with Ni plating, with holes etched into it for the apertures 23 .
- Holder 26 can be aluminum or a molded plastic material, and mirror 20 , aperture element 22 , and lenses 24 can be adhered to holder 26 or mechanically held in place on the holder.
- Light sources 16 can be light emitting diodes (LEDs).
- Cover 14 can be optical glass.
- Housing 12 can be metal or a plastic material. The various components of imager 10 in housing 12 can be positioned at particular distances in the optical path for a desired performance.
- FIG. 7 is a side view of an alternative 3D imager 50 with depth of field extension using one fold mirror.
- FIGS. 8 and 9 are perspective and exploded perspective views, respectively, of 3D imager 50 of FIG. 7 .
- System 50 includes a housing 52 , a mirror 58 , an aperture element 60 , lenses 62 , and an image sensor 64 .
- Housing 52 has an angled tip 57 with mirror 58 secured adjacent an interior surface of the tip.
- a circuit board 66 can receive electronic signals from image sensor 64 representing the images and transmit the signals for further processing to generate a 3D model of the object.
- Housing 52 includes a transparent cover 54 and light sources 56 , such as LEDs, adjacent the cover to illuminate an object to be imaged.
- image sensor 64 is positioned substantially perpendicular to an object plane of the object.
- the imager has a depth of field which includes housing 52 , in particular a bottom surface 53 of the housing.
- the depth of field can alternatively include and extend into the inside of housing 52 .
- imager 50 can be placed directly on (in physical contact with) an object to be imaged, such as on teeth for intra-oral scanning.
- FIG. 9 illustrates apertures 61 in aperture element 60 to create multiple channels. Although three apertures are shown, aperture element 60 can alternatively have two apertures for a two channel system.
- Aperture element 60 can be on prism mirror 58 , on lenses 62 , or in between mirror 58 and lenses 62 with gaps on both sides of aperture element 60 .
- Lenses 62 can be separate lenses or one molded piece of material for each channel.
- the fold mirror in imager 50 can be implemented with a concave mirror or a planar mirror plate instead of the prism as shown.
- the components of imager 50 can be implemented with the exemplary materials provided above for imager 10 .
- FIGS. 10-12 illustrate three options of the optics for each channel.
- FIG. 10 illustrates two lenses 70 positioned along an optical path normal to an image sensor 72 .
- FIG. 11 illustrates three lenses 74 positioned along an optical path normal to an image sensor 76 .
- FIG. 12 illustrates four lenses 78 positioned along an optical path normal to an image sensor 80 .
- the images of the object formed on the image sensor are located in two regions as shown in FIG. 13 for a two channel system or three regions as shown in FIG. 14 for a three-channel system.
- a first view-angle image 84 is captured in region 88 of an image sensor 82
- second view-angle image 86 is captured in region 90 of image sensor 82 .
- a first view-angle image 94 is captured in region 100 of an image sensor 92
- a second view-angle image 96 is captured in region 102 of image sensor 92
- a third view-angle image 98 is captured in region 104 of image sensor 92 .
- the image sensors can be implemented with, for example, any digital imager such as a CMOS or CCD sensor.
- the image sensor can include a single sensor, as shown, partitioned into multiple image data regions. Alternatively, the image sensor can be implemented with multiple sensors with the image data regions distributed among them.
- FIGS. 15-17 are diagrams illustrating examples of cover window fiducials for use relating to calibration.
- FIG. 15 illustrates fiducials 110 , 111 , 112 , and 113 located in corners of cover 14 .
- the fiducials have a known distance between them, for example distance 114 between fiducials 110 and 111 , and distance 115 between fiducials 110 and 112 .
- These fiducials 110 - 113 are indicated as circles filled with an “x.”
- FIG. 16 illustrates fiducials 120 , 121 , 122 , and 123 located in corners of cover 14 .
- the fiducials have a known distance between them, for example distance 124 between fiducials 120 and 121 , and distance 125 between fiducials 120 and 122 . These fiducials are indicated as solid dots.
- FIG. 17 illustrates a row of fiducials 130 on one side of cover 14 and another row of fiducials 131 on the opposing side of cover 14 .
- the fiducials have a known distance between them, for example distance 133 between fiducials in row 130 , distance 134 between fiducials in row 131 , and distance 132 between the first fiducials in rows 130 and 131 . These fiducials in rows 130 and 131 are indicated as solid dots.
- the fiducials can be implemented with two different opaque colors.
- the fiducials in FIG. 15 can be implemented with a first opaque color for the circle and a second opaque color, different from the first color, for the “x.”
- the fiducials in FIGS. 16 and 17 can be implemented with a first opaque color for a portion of the solid dot and a second opaque color, different from the first color, for another portion of the solid dot.
- the fiducials can be implemented with other shapes such as, for example, triangles or squares.
- the fiducials are preferably located at the edges of the cover window to be outside the main view of the image sensor although still within view of and detectable by the image sensor.
- the fiducials can be located anywhere on the cover window within view of and detectable by the image sensor. Although shown on cover 14 of scanner 10 , the fiducials can also be located on cover 54 of scanner 50 or on cover windows of other 3D or multi-view scanners.
- fiducials By placing these fiducials as precise features on the cover window of a 3D scanner where the depth of field includes the cover window, a permanent distance-measuring standard with virtually no aging-related changes can be built into the scanner.
- the fiducial locations can acquired and compared with the expected specifications.
- the distance between the fiducials as detected by the image sensor and associated system processing images from the image sensor can be compared with the actual known distance on the cover. Any discrepancy can then be used to correct errors caused by the aging or even short-term temperature related variations of the scanner.
- the fiducials can also be used for initial calibration of the scanner.
- the cover such as transparent glass, can provide a water-tight seal that does not interfere with imaging and permits the frequent submersion into disinfecting solution.
- the fiducials can include a variety of shapes and characteristics, and they should be chosen so as to minimize the likelihood of interfering with the scanning experience or calibration process. The fiducials should also be chosen to maximize the likelihood of finding their images during a typical scan.
- the fiducials preferably are features that the scanner can detect via the image sensor and associated processing and are not very noticeable to a user.
- the fiducials are preferably opaque and consequently produce a dark image of the fiducials in the video frames captured by the scanner. Since the cover lies within the depth of field of the system, the fiducials will also be in good focus. Ideally, the fiducials are located on the inner surface of the cover so as to not be exposed to the outside environment that could damage them over time. Alternatively, the fiducials can be located on the outer surface of the cover or embedded within the cover.
- the distance separating the fiducials can be specified to a manufacturer, where photolithographic processes can produce the fiducials to within tolerances of ⁇ 1 micron, for example.
- the resulting measurement standard or ground truth would have a 0.02% tolerance along the sides of the square configuration or a 0.014% tolerance along a diagonal. Such an error is more than 5 times better than the desired accuracy of the entire system for many embodiments.
- fiducials By incorporating fiducials into the cover of a scanner, the user need not be an active participant in the diagnostic process.
- the fiducials can be a permanent feature available for measurement in almost every video frame during the intended use of the system. By being available for nearly every video frame, the fiducials afford the system a method to track the thermal-state and thus correct or augment the correction to thermal error in real time.
- the cover when implemented with glass can expand and contract due to thermal variations of the scanner, the thermal sensitivity of the scanner is due to a much larger expansion and contraction of the lens array when implemented with plastic where mere microns of movement can produce significant fractions of a percent in 3D model error.
- a typical glass cover has a thermal coefficient of expansion around 10 ⁇ 6 (per degree C.), meaning that two fiducials separated by 5 mm on room temperature glass that warms up by 20° C. would then be separated by 5.001 mm.
- a small thermal response is far smaller than the typical system can resolve.
- the cover with permanent fiducials would be stable over time and thus provide a ground truth isotropic correction for any potential long-term drifting of the scanner from the calibrated state.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- General Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Studio Devices (AREA)
- Image Input (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
- Three-dimensional (3D) image scanners are typically calibrated after assembly. The calibration process permits the scanners to produce accurate 3D measurements of solid objects placed in the field of view of the system. In addition, the calibration process characterizes the thermal sensitivity of the scanner during operation and removes the thermal-dependent error from 3D measurements. As the scanner ages over the long-term, there is the possibility that the physical state of the scanner can drift from the originally calibrated state. The drifted state can cause small but measurable errors in the 3D measurements of solid objects. A field calibration target can be used to correct a more severe aging-related drift from the initial calibration. However, the field target calibration requires active participation by the user of the scanner, which can be inconvenient and not necessarily used when needed to recalibrate the scanner.
- A first 3D imaging apparatus, consistent with the present invention, includes a housing and an image sensor within the housing. First and second mirrors are positioned to receive an image from an object external to the housing and provide the image to the image sensor. An aperture element having a plurality of apertures is located along an optical path between the object and the image sensor for providing the image along a plurality of optical channels to the image sensor. The apparatus also includes a transparent cover positioned within the optical path and having a plurality of fiducials. The depth of field of the apparatus includes the transparent cover along with the fiducials.
- A second 3D imaging apparatus, consistent with the present invention, includes a housing and an image sensor within the housing. A mirror is positioned to receive an image from an object external to the housing and provide the image to the image sensor. An aperture element having a plurality of apertures is located along an optical path between the object and the image sensor for providing the image along a plurality of optical channels to the image sensor. The apparatus also includes a transparent cover positioned within the optical path and having a plurality of fiducials. The depth of field of the apparatus includes the transparent cover along with the fiducials.
- The accompanying drawings are incorporated in and constitute a part of this specification and, together with the description, explain the advantages and principles of the invention. In the drawings,
-
FIG. 1 is a side view of a 3D imager with depth of field extension; -
FIG. 2 is a diagram illustrating use of two fold mirrors for depth of field extension; -
FIG. 3 is a diagram illustrating use of two concave mirrors for depth of field extension; -
FIG. 4 is a perspective view of the 3D imager ofFIG. 1 ; -
FIG. 5 is an exploded perspective view of the 3D imager ofFIG. 1 ; -
FIG. 6 is an exploded side view of the 3D imager ofFIG. 1 ; -
FIG. 7 is a side view of an alternative 3D imager with depth of field extension; -
FIG. 8 is a perspective view of the 3D imager ofFIG. 7 ; -
FIG. 9 is an exploded perspective view of the 3D imager ofFIG. 7 ; -
FIG. 10 is a diagram illustrating two optical elements for each optical channel in a 3D imager; -
FIG. 11 is a diagram illustrating three optical elements for each optical channel in a 3D imager; -
FIG. 12 is a diagram illustrating four optical elements for each optical channel in a 3D imager; -
FIG. 13 is a diagram illustrating two image data regions on an image sensor in a 3D imager for obtaining multiple views in a 3D system; -
FIG. 14 is a diagram illustrating three image data regions on an image sensor in a 3D imager for obtaining multiple views in a 3D system; -
FIG. 15 is a diagram illustrating a first type of cover window fiducials for use relating to calibration; -
FIG. 16 is a diagram illustrating a second type of cover window fiducials for use relating to calibration; and -
FIG. 17 is a diagram illustrating a third type of cover window fiducials for use relating to calibration. - Embodiments include using fiducials on a cover window of a 3D scanner for use in calibrating the scanner or checking the calibrated state of the scanner. An example of a 3D scanner having a cover window within its depth of field is disclosed in U.S. patent application Ser. No. 14/277,113, entitled “3D Image Capture Apparatus with Depth of Field Extension,” and filed May 14, 2014, which is incorporated herein by reference as if fully set forth. Systems to generate 3D images or models based upon image sets from multiple views are disclosed in U.S. Pat. Nos. 7,956,862 and 7,605,817, both of which are incorporated herein by reference as if fully set forth. These systems can be included in a housing providing for hand-held use, and an example of such a housing is disclosed in U.S. Pat. No. D674,091, which is incorporated herein by reference as if fully set forth.
-
FIG. 1 is a side view of a3D imager 10 with depth of field extension through the use of two mirrors.System 10 includes ahousing 12, 18 and 20, anmirrors aperture element 22,lenses 24, and animage sensor 28.Housing 12 has anangled tip 17 withmirror 18 secured adjacent an interior surface of the tip. Amechanical holder 26 is used to holdmirror 20,aperture element 22, andlenses 24 in position overimage sensor 28. Acircuit board 30 can receive electronic signals fromimage sensor 28 representing the images and transmit the signals for further processing to generate a 3D model of the object.Housing 12 includes atransparent cover 14 andlight sources 16 adjacent the cover to illuminate an object to be imaged. In this design,image sensor 28 is positioned substantially parallel to an object plane of the object. The imager has a depth offield 32 which includeshousing 12, in particular abottom surface 13 of the housing. The depth of field can alternatively include and extend into the inside ofhousing 12. By having the depth of field include the housing,imager 10 can be placed directly on (in physical contact with) an object to be imaged, such as on teeth for intra-oral scanning. - For the configuration of
imager 10 ofFIG. 1 , the image plane (image sensor surface plane) 42 is positioned along the horizontal plane withobject plane 34, as shown inFIG. 2 . 36 and 38 provide an image of an object atMirrors object plane 34 through alens 40 to an image sensor atimage plane 42. If the image sensor surface is normal to the optical axis oflens 40, to achieve good image quality over the entire field of view ofobject plane 34,object plane 34 needs to be parallel toimage plane 42. If α is the angle ofmirror 38 toimage plane 42 and β is the angle of themirror 36 toobject plane 34, to have a good image quality over the lens field of view, 36 and 38 have the following relationship: α+β=90°.mirrors -
FIGS. 1 and 2 show a configuration using two planar fold mirrors. For the two fold mirrors configuration, either of the two fold mirrors, or both of the mirrors, can be implemented with concave mirrors. If concave mirrors are used, the position of the image sensor can be adjusted to compensate for the focus of the concave mirror and obtain sharp images. -
FIG. 3 illustrates a system using two concave mirrors. 46 and 48 provide an image of an object atMirrors object plane 44 through alens 50 to an image sensor atimage plane 52. If the image sensor surface is normal to the optical axis oflens 50, to achieve good image quality over the entire field of view ofobject plane 44,object plane 44 needs to be parallel to imageplane 52. If α′ is the angle ofmirror 48 to imageplane 52 and β′ is the angle of themirror 46 to objectplane 44, to have a good image quality over the lens field of view, mirrors 46 and 48 have the following relationship: α′+β′=90°. -
FIGS. 4-6 are perspective, exploded perspective, and exploded side views, respectively, of3D imager 10 ofFIG. 1 .FIG. 5 illustratesapertures 23 inaperture element 22 to create multiple channels. Although three apertures are shown,aperture element 22 can alternatively have two apertures for a two channel system. - The components of
imager 10 can be implemented with, for example, the following. 18 and 20 can be aluminum or silver coated on optical glass or metal.Mirrors Mirror 18 can alternatively be a prism, andmirror 20 can alternatively be a planar mirror plate. A prism is used formirror 20 for ease of holding the mirror in place onholder 26. 18 and 20 can optionally be one piece of material with mirrors on both ends.Mirrors 18 and 20 are preferably positioned at 50° and 40°, respectively, from the image plane. The angles of the mirrors should total 90° for the image sensor to obtain images normal to the target, and each of the angles can thus be adjusted for desired placement in the housing.Mirrors Lenses 24 can include separate lenses for each channel or be a single molded piece of material. Exemplary lens arrays are provided below.Aperture element 22 can be a multi-layer metal plate, such as BeCu base with Ni plating, with holes etched into it for theapertures 23.Holder 26 can be aluminum or a molded plastic material, andmirror 20,aperture element 22, andlenses 24 can be adhered toholder 26 or mechanically held in place on the holder.Light sources 16 can be light emitting diodes (LEDs).Cover 14 can be optical glass.Housing 12 can be metal or a plastic material. The various components ofimager 10 inhousing 12 can be positioned at particular distances in the optical path for a desired performance. -
FIG. 7 is a side view of analternative 3D imager 50 with depth of field extension using one fold mirror.FIGS. 8 and 9 are perspective and exploded perspective views, respectively, of3D imager 50 ofFIG. 7 .System 50 includes ahousing 52, amirror 58, anaperture element 60,lenses 62, and animage sensor 64.Housing 52 has an angledtip 57 withmirror 58 secured adjacent an interior surface of the tip. Acircuit board 66 can receive electronic signals fromimage sensor 64 representing the images and transmit the signals for further processing to generate a 3D model of the object.Housing 52 includes atransparent cover 54 andlight sources 56, such as LEDs, adjacent the cover to illuminate an object to be imaged. In this design,image sensor 64 is positioned substantially perpendicular to an object plane of the object. The imager has a depth of field which includeshousing 52, in particular abottom surface 53 of the housing. The depth of field can alternatively include and extend into the inside ofhousing 52. By having the depth of field include the housing,imager 50 can be placed directly on (in physical contact with) an object to be imaged, such as on teeth for intra-oral scanning. -
FIG. 9 illustratesapertures 61 inaperture element 60 to create multiple channels. Although three apertures are shown,aperture element 60 can alternatively have two apertures for a two channel system.Aperture element 60 can be onprism mirror 58, onlenses 62, or in betweenmirror 58 andlenses 62 with gaps on both sides ofaperture element 60.Lenses 62 can be separate lenses or one molded piece of material for each channel. The fold mirror inimager 50 can be implemented with a concave mirror or a planar mirror plate instead of the prism as shown. The components ofimager 50 can be implemented with the exemplary materials provided above forimager 10. - Each of the optical channels in the 3D imagers can have single or multiple optical elements. Multiple elements can achieve superior imaging quality, large depth of field, and athermalized system design.
FIGS. 10-12 illustrate three options of the optics for each channel.FIG. 10 illustrates twolenses 70 positioned along an optical path normal to animage sensor 72.FIG. 11 illustrates threelenses 74 positioned along an optical path normal to animage sensor 76.FIG. 12 illustrates fourlenses 78 positioned along an optical path normal to animage sensor 80. - The images of the object formed on the image sensor are located in two regions as shown in
FIG. 13 for a two channel system or three regions as shown inFIG. 14 for a three-channel system. InFIG. 13 , a first view-angle image 84 is captured inregion 88 of animage sensor 82, and second view-angle image 86 is captured inregion 90 ofimage sensor 82. InFIG. 14 , a first view-angle image 94 is captured inregion 100 of animage sensor 92, a second view-angle image 96 is captured inregion 102 ofimage sensor 92, and a third view-angle image 98 is captured inregion 104 ofimage sensor 92. - The image sensors can be implemented with, for example, any digital imager such as a CMOS or CCD sensor. The image sensor can include a single sensor, as shown, partitioned into multiple image data regions. Alternatively, the image sensor can be implemented with multiple sensors with the image data regions distributed among them.
-
FIGS. 15-17 are diagrams illustrating examples of cover window fiducials for use relating to calibration.FIG. 15 illustrates 110, 111, 112, and 113 located in corners offiducials cover 14. The fiducials have a known distance between them, forexample distance 114 between 110 and 111, andfiducials distance 115 between 110 and 112. These fiducials 110-113 are indicated as circles filled with an “x.”fiducials FIG. 16 illustrates 120, 121, 122, and 123 located in corners offiducials cover 14. The fiducials have a known distance between them, forexample distance 124 between 120 and 121, andfiducials distance 125 between 120 and 122. These fiducials are indicated as solid dots.fiducials FIG. 17 illustrates a row offiducials 130 on one side ofcover 14 and another row offiducials 131 on the opposing side ofcover 14. The fiducials have a known distance between them, forexample distance 133 between fiducials inrow 130,distance 134 between fiducials inrow 131, anddistance 132 between the first fiducials in 130 and 131. These fiducials inrows 130 and 131 are indicated as solid dots.rows - The fiducials can be implemented with two different opaque colors. For example, the fiducials in
FIG. 15 can be implemented with a first opaque color for the circle and a second opaque color, different from the first color, for the “x.” As another example, the fiducials inFIGS. 16 and 17 can be implemented with a first opaque color for a portion of the solid dot and a second opaque color, different from the first color, for another portion of the solid dot. Aside from the fiducials shown inFIGS. 15-17 , the fiducials can be implemented with other shapes such as, for example, triangles or squares. The fiducials are preferably located at the edges of the cover window to be outside the main view of the image sensor although still within view of and detectable by the image sensor. Alternatively, the fiducials can be located anywhere on the cover window within view of and detectable by the image sensor. Although shown oncover 14 ofscanner 10, the fiducials can also be located oncover 54 ofscanner 50 or on cover windows of other 3D or multi-view scanners. - By placing these fiducials as precise features on the cover window of a 3D scanner where the depth of field includes the cover window, a permanent distance-measuring standard with virtually no aging-related changes can be built into the scanner. During operation of the system, the fiducial locations can acquired and compared with the expected specifications. In particular, the distance between the fiducials as detected by the image sensor and associated system processing images from the image sensor can be compared with the actual known distance on the cover. Any discrepancy can then be used to correct errors caused by the aging or even short-term temperature related variations of the scanner. The fiducials can also be used for initial calibration of the scanner.
- The cover, such as transparent glass, can provide a water-tight seal that does not interfere with imaging and permits the frequent submersion into disinfecting solution. The fiducials can include a variety of shapes and characteristics, and they should be chosen so as to minimize the likelihood of interfering with the scanning experience or calibration process. The fiducials should also be chosen to maximize the likelihood of finding their images during a typical scan. In particular, the fiducials preferably are features that the scanner can detect via the image sensor and associated processing and are not very noticeable to a user. The fiducials are preferably opaque and consequently produce a dark image of the fiducials in the video frames captured by the scanner. Since the cover lies within the depth of field of the system, the fiducials will also be in good focus. Ideally, the fiducials are located on the inner surface of the cover so as to not be exposed to the outside environment that could damage them over time. Alternatively, the fiducials can be located on the outer surface of the cover or embedded within the cover.
- The distance separating the fiducials can be specified to a manufacturer, where photolithographic processes can produce the fiducials to within tolerances of ±1 micron, for example. In the case that the fiducials are placed along the corners of a 5 mm square configuration, for example, the resulting measurement standard or ground truth would have a 0.02% tolerance along the sides of the square configuration or a 0.014% tolerance along a diagonal. Such an error is more than 5 times better than the desired accuracy of the entire system for many embodiments.
- By incorporating fiducials into the cover of a scanner, the user need not be an active participant in the diagnostic process. The fiducials can be a permanent feature available for measurement in almost every video frame during the intended use of the system. By being available for nearly every video frame, the fiducials afford the system a method to track the thermal-state and thus correct or augment the correction to thermal error in real time. Although the cover when implemented with glass can expand and contract due to thermal variations of the scanner, the thermal sensitivity of the scanner is due to a much larger expansion and contraction of the lens array when implemented with plastic where mere microns of movement can produce significant fractions of a percent in 3D model error. In particular, a typical glass cover has a thermal coefficient of expansion around 10−6 (per degree C.), meaning that two fiducials separated by 5 mm on room temperature glass that warms up by 20° C. would then be separated by 5.001 mm. Such a small thermal response is far smaller than the typical system can resolve. Furthermore, the cover with permanent fiducials would be stable over time and thus provide a ground truth isotropic correction for any potential long-term drifting of the scanner from the calibrated state.
Claims (20)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/582,255 US20160191901A1 (en) | 2014-12-24 | 2014-12-24 | 3d image capture apparatus with cover window fiducials for calibration |
| EP15874127.2A EP3238446A4 (en) | 2014-12-24 | 2015-12-14 | 3d image capture apparatus with cover window fiducials for calibration |
| AU2015370042A AU2015370042B2 (en) | 2014-12-24 | 2015-12-14 | 3D image capture apparatus with cover window fiducials for calibration |
| PCT/US2015/065480 WO2016105991A1 (en) | 2014-12-24 | 2015-12-14 | 3d image capture apparatus with cover window fiducials for calibration |
| US16/654,327 US10602127B2 (en) | 2014-12-24 | 2019-10-16 | 3D image capture apparatus with cover window fiducials for calibration |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/582,255 US20160191901A1 (en) | 2014-12-24 | 2014-12-24 | 3d image capture apparatus with cover window fiducials for calibration |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/654,327 Continuation US10602127B2 (en) | 2014-12-24 | 2019-10-16 | 3D image capture apparatus with cover window fiducials for calibration |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160191901A1 true US20160191901A1 (en) | 2016-06-30 |
Family
ID=56151420
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/582,255 Abandoned US20160191901A1 (en) | 2014-12-24 | 2014-12-24 | 3d image capture apparatus with cover window fiducials for calibration |
| US16/654,327 Active US10602127B2 (en) | 2014-12-24 | 2019-10-16 | 3D image capture apparatus with cover window fiducials for calibration |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/654,327 Active US10602127B2 (en) | 2014-12-24 | 2019-10-16 | 3D image capture apparatus with cover window fiducials for calibration |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20160191901A1 (en) |
| EP (1) | EP3238446A4 (en) |
| AU (1) | AU2015370042B2 (en) |
| WO (1) | WO2016105991A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180333232A1 (en) * | 2017-05-17 | 2018-11-22 | Vatech Co., Ltd. | Calibration cradle for intraoral scanner and intraoral scanner system including the same |
| US20190282342A1 (en) * | 2018-03-19 | 2019-09-19 | 3D Imaging and Simulation Corp. Americas | Intraoral scanner and computing system for capturing images and generating three-dimensional models |
| DE102019112679A1 (en) * | 2019-05-15 | 2020-11-19 | Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg | Aperture module for a cinematographic camera system |
| WO2022177259A1 (en) * | 2021-02-16 | 2022-08-25 | 주식회사 메디트 | Calibration cradle for three-dimensional scanner |
| WO2022177261A1 (en) * | 2021-02-16 | 2022-08-25 | 주식회사 메디트 | Calibration cradle for three-dimensional scanner and control method for same |
| EP4169469A1 (en) * | 2021-10-25 | 2023-04-26 | Erbe Vision GmbH | Laparoskopic camera arrangement and method for camera alignment error correction |
| US11744452B1 (en) * | 2023-04-05 | 2023-09-05 | Apollo Innovations, Llc | Intra-oral scanning and image acquisition module |
| US12196891B2 (en) * | 2020-02-28 | 2025-01-14 | Continental Autonomous Mobility US, LLC | Vehicle component with image sensor aimed at fiducial marker |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11925320B1 (en) * | 2023-07-28 | 2024-03-12 | Nadia Ahmadzadeh Saffari | Oral camera |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8493574B2 (en) * | 2008-07-24 | 2013-07-23 | Massachusetts Institute Of Technology | Imaging shape changes in ear canals |
| US9591286B2 (en) * | 2014-05-14 | 2017-03-07 | 3M Innovative Properties Company | 3D image capture apparatus with depth of field extension |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR0150055B1 (en) * | 1994-07-29 | 1998-12-01 | 이대원 | Stereoscopic camera with movable opening |
| US6327047B1 (en) * | 1999-01-22 | 2001-12-04 | Electronics For Imaging, Inc. | Automatic scanner calibration |
| US6437823B1 (en) | 1999-04-30 | 2002-08-20 | Microsoft Corporation | Method and system for calibrating digital cameras |
| JP2002125247A (en) * | 2000-10-17 | 2002-04-26 | Sony Corp | Stereoscopic image photographing device |
| WO2002099369A2 (en) * | 2001-04-11 | 2002-12-12 | Cynovad, Inc. | Methods and systems for management of information related to the appearance of an object |
| JP2009509582A (en) | 2005-09-22 | 2009-03-12 | スリーエム イノベイティブ プロパティズ カンパニー | Artifact reduction in 3D imaging |
| DE102005045854B3 (en) | 2005-09-26 | 2007-04-12 | Siemens Ag | Method and system for calibrating a camera in production machines |
| US7605817B2 (en) | 2005-11-09 | 2009-10-20 | 3M Innovative Properties Company | Determining camera motion |
| EP2762972B1 (en) * | 2006-02-13 | 2020-04-08 | Midmark Corporation | Monocular three-dimensional imaging |
| DE102007013355A1 (en) * | 2007-03-16 | 2008-09-18 | Dürr Dental GmbH & Co. KG | Diagnostic camera and attachment for the realization of such |
| US8223193B2 (en) | 2009-03-31 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Targets, fixtures, and workflows for calibrating an endoscopic camera |
| US11699247B2 (en) | 2009-12-24 | 2023-07-11 | Cognex Corporation | System and method for runtime determination of camera miscalibration |
| EP2569607B1 (en) * | 2010-05-13 | 2020-04-22 | Quantum Dental Technologies Inc. | Handpiece with integrated optical system for photothermal radiometry and luminescence measurements |
| JP6007178B2 (en) * | 2010-09-03 | 2016-10-12 | カリフォルニア インスティテュート オブ テクノロジー | 3D imaging system |
| US8842168B2 (en) * | 2010-10-29 | 2014-09-23 | Sony Corporation | Multi-view video and still 3D capture system |
| GB2486878A (en) * | 2010-12-21 | 2012-07-04 | St Microelectronics Res & Dev | Producing a 3D image from a single 2D image using a single lens EDoF camera |
| USD674091S1 (en) | 2011-12-20 | 2013-01-08 | 3M Innovative Properties Company | Intra-oral scanning wand |
| US8619144B1 (en) | 2012-03-14 | 2013-12-31 | Rawles Llc | Automatic camera calibration |
| DE102012220048B4 (en) | 2012-11-02 | 2018-09-20 | Sirona Dental Systems Gmbh | Calibration device and method for calibrating a dental camera |
| CA2896210C (en) * | 2012-12-24 | 2022-06-21 | Dentlytec G.P.L. Ltd | Device and method for subgingival measurement |
-
2014
- 2014-12-24 US US14/582,255 patent/US20160191901A1/en not_active Abandoned
-
2015
- 2015-12-14 AU AU2015370042A patent/AU2015370042B2/en not_active Ceased
- 2015-12-14 WO PCT/US2015/065480 patent/WO2016105991A1/en active Application Filing
- 2015-12-14 EP EP15874127.2A patent/EP3238446A4/en not_active Withdrawn
-
2019
- 2019-10-16 US US16/654,327 patent/US10602127B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8493574B2 (en) * | 2008-07-24 | 2013-07-23 | Massachusetts Institute Of Technology | Imaging shape changes in ear canals |
| US9591286B2 (en) * | 2014-05-14 | 2017-03-07 | 3M Innovative Properties Company | 3D image capture apparatus with depth of field extension |
| US20170127042A1 (en) * | 2014-05-14 | 2017-05-04 | 3M Innovative Properties Company | 3d image capture apparatus with depth of field extension |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180333232A1 (en) * | 2017-05-17 | 2018-11-22 | Vatech Co., Ltd. | Calibration cradle for intraoral scanner and intraoral scanner system including the same |
| US20190282342A1 (en) * | 2018-03-19 | 2019-09-19 | 3D Imaging and Simulation Corp. Americas | Intraoral scanner and computing system for capturing images and generating three-dimensional models |
| US10835352B2 (en) * | 2018-03-19 | 2020-11-17 | 3D Imaging and Simulation Corp. Americas | Intraoral scanner and computing system for capturing images and generating three-dimensional models |
| DE102019112679A1 (en) * | 2019-05-15 | 2020-11-19 | Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg | Aperture module for a cinematographic camera system |
| US12196891B2 (en) * | 2020-02-28 | 2025-01-14 | Continental Autonomous Mobility US, LLC | Vehicle component with image sensor aimed at fiducial marker |
| WO2022177259A1 (en) * | 2021-02-16 | 2022-08-25 | 주식회사 메디트 | Calibration cradle for three-dimensional scanner |
| WO2022177261A1 (en) * | 2021-02-16 | 2022-08-25 | 주식회사 메디트 | Calibration cradle for three-dimensional scanner and control method for same |
| EP4169469A1 (en) * | 2021-10-25 | 2023-04-26 | Erbe Vision GmbH | Laparoskopic camera arrangement and method for camera alignment error correction |
| US11744452B1 (en) * | 2023-04-05 | 2023-09-05 | Apollo Innovations, Llc | Intra-oral scanning and image acquisition module |
Also Published As
| Publication number | Publication date |
|---|---|
| US10602127B2 (en) | 2020-03-24 |
| US20200053344A1 (en) | 2020-02-13 |
| AU2015370042A1 (en) | 2017-07-13 |
| EP3238446A1 (en) | 2017-11-01 |
| WO2016105991A1 (en) | 2016-06-30 |
| EP3238446A4 (en) | 2018-08-22 |
| AU2015370042B2 (en) | 2019-01-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10602127B2 (en) | 3D image capture apparatus with cover window fiducials for calibration | |
| US20240146895A1 (en) | Time-of-flight camera system | |
| JP6882461B2 (en) | Real-time calibration for flight time depth measurement | |
| US9967543B2 (en) | 3D image capture apparatus with depth of field extension | |
| KR102129383B1 (en) | Calibration cradle for oral scanner | |
| EP2619987B1 (en) | Wide angle field of view active illumination imaging system | |
| CN108700650B (en) | Apparatus and method for calibrating light-time-of-travel cameras | |
| US9681043B2 (en) | Multi-camera imaging system, and compensation method for image reconstruction | |
| CN107430187A (en) | Depth transducer module and depth sensing method | |
| KR20160093600A (en) | Ranging cameras using a common substrate | |
| JP2018152632A (en) | Imaging apparatus and imaging method | |
| US9588260B2 (en) | Microlens substrate and imaging apparatus | |
| US20160341947A1 (en) | Image acquisition device, image forming system, and image forming method | |
| JP2014224808A (en) | Image detection system | |
| US8416404B2 (en) | Method and system for measurement and correction of thermally induced changes of boresight, effective focal length, and focus | |
| ES2292980T3 (en) | APPLIANCE AND CALIBRATION METHOD OF A FOCAL PLANE DETECTOR. | |
| KR101807371B1 (en) | Apparatus and method for photographic measuring | |
| JPH05303032A (en) | Optical module for distance measurement | |
| JP2024063309A (en) | Distance measuring camera system, mobile device equipped with same, calibration method, and program | |
| JP2001027526A (en) | 3D image detection device | |
| JPH0557607U (en) | Measuring point member for optical measurement | |
| JP2013130687A (en) | Imaging device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEGALL, DAVID B.;KRYZHNIY, VLADIMIR;HANSEN, ERIC S.;AND OTHERS;SIGNING DATES FROM 20150225 TO 20150326;REEL/FRAME:035404/0768 |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |