Análise de redes sociais
Sociologia |
---|
Teoria |
Métodos |
Subcampos |
Índice |
Análise de redes sociais (ARS; em inglês: social network analysis, SNA) é uma interpelação da Sociologia, da Psicologia Social e da Antropologia (FREEMAN, 1996), sendo uma análise metódica de Redes Sociais. As Redes Sociais consistem em estruturas que representam pessoas ou organizações (atores) e as relações entre si.[1]
A Análise de Redes Sociais perceciona as relações sociais em termos da Teoria de Redes. Permite estudar, através da identificação dos atores e suas ligações, as relações entre os mesmos[2] de forma a poder identificar as formas de interação entre si, contribuindo para o conhecimento sobre a rede social e o seu desenvolvimento. A Análise de Redes Sociais permite representar as redes sociais através da representação dos nós e das ligações entre eles. Os nós da rede social representam os atores dessa rede (indivíduos ou organizações). As ligações representam as relações entre os atores componentes da rede representada.
As relações entre os atores podem ser relações do tipo: parentesco, amizade, posição organizacional, etc. As redes sociais podem ser representadas através de diagramas onde os nós são representados por pontos e as ligações são representadas por linhas. A Análise das Redes Sociais centra o seu interesse nas relações entre os diversos atores e não nas suas características.
Visão global
[editar | editar código-fonte]A ideia de rede social começou a ser utilizada no início do século XX como forma de identificar as relações complexas entre os vários elementos de um sistema social nas suas diferentes dimensões.
A Análise de Redes Sociais (ARS) despontou como uma técnica utilizada pela Sociologia Moderna. Ganhou extrema importância em diversas áreas de estudo tais como: Administração, Medicina, Economia, Antropologia, Sociologia, Geografia, Ciências da Comunicação, Biologia.
Diversos autores foram pioneiros na Análise de Redes Sociais, como por exemplo:
- • John Barnes que estudou as Redes Sociais para compreender a influência das interações entre indivíduos num sistema social;
- • Jacob Moreno introduziu a ideia da utilização de diagramas e matrizes para o estudo de relações entre pessoas;
- • Leonhard Euler resolveu o problema matemático das Pontes de Königsberg do qual resultou a Teoria dos Grafos, que é uma área da Matemática que estuda as relações entre as componentes de um determinado grupo.
Métricas
[editar | editar código-fonte]Existem vários tipos de métricas com as quais é possível analisar as redes sociais consoante a sua utilização:
Conexão
[editar | editar código-fonte]- • Homofilia – permite estudar as relações sociais, identificando quais os atores que comportam semelhanças entre eles e os que comportam diferenças. As semelhanças poderão ser de diversa ordem: idade, sexo, raça, profissão, habilitações, etc.
- • Multiplexidade (do inglês "multiplexity", não "multiplicity") – tem a ver com os vários tipos de relações entre os atores, onde poderá existir mais do que um tipo de relação. O que pode ser associado à força do relacionamento existente.
- • Reciprocidade – métrica que permite medir a reciprocidade da relação/interação entre dois nós.
- • Encerramento da Rede – onde um nó com várias interações/relações com outros nós, em que esses mesmos nós interagem entre si, sendo o primeiro nó o que fecha a rede.
- • Propinquidade – métrica onde se mede a tendência de um nó para ter mais relações com os nós que lhe são geograficamente mais próximos.
Distribuição
[editar | editar código-fonte]- • Ponte – segundo a teoria dos grafos uma ponte traduz-se por ser uma ligação única entre dois nós ou dois grupos de nós.
- • Centralidade – engloba diversas métricas que permitem identificar e quantificar a importância de um nó ou um grupo de nós numa rede. Existem vários tipos de métodos na medição da centralidade numa rede.
- Centralidade de Intermediação - permite identificar e caracterizar os nós com maior vantagem ou poder numa rede, os quais comportam a distância mais pequena entre os vários nós da rede.
- Centralidade de Grau – (out e in) permitem medir o grau de cada nó dependendo das suas relações.
- Centralidade de Proximidade – permite definir qual a distância métrica de determinado nó através da medição do comprimento dos seus caminhos mais curtos.
- Centralidade de Vetor Próprio – permite medir a influência de um nó na sua rede.
- Centralidade Alfa – é uma adaptação da "centralidade de vetor próprio" e que permite medir a centralidade dos nós numa rede com a inclusão da importância de fatores externos na mesma.
- Centralidade Katz – é uma adaptação da centralidade "Degree" (grau) e permite medir o número de todos os nós que podem ser ligados por um caminho numa rede, enquanto a contribuição dos nós distantes é sancionada por um fator de atenuação.
- • Densidade – permite definir o número de ligações diretas existentes mediante o número total de ligações possíveis.
- • Distância – permite medir o número total de passos entre um extremo e outro da rede, ou entre dois nós numa mesma rede.
- • Vazio Estrutural – é uma métrica que permite identificar a inexistência de ligações entre dois nós numa rede.
- • Força de Ligação ou Força dos Laços - define-se pela combinação de vários fatores como tempo, intimidade, intensidade emocional e reciprocidade (mutualidade). As ligações consideradas fortes estão associadas a homofilia, propinquidade e transitividade. As ligações consideradas fracas estão normalmente associadas às pontes.
Segmentação
[editar | editar código-fonte]- • Grupos – os grupos numa rede são identificados como "cliques", se cada um dos seus nós está diretamente ligado a todos os outros nós.
- • Coeficiente de Agrupamento ("Clustering") – permite medir o grau pelo qual os nós se tendem a agrupar (a formar "Clusters" ou "aglomerados").
- • Coesão – permite medir o grau em que os nós se encontram diretamente ligados entre si através de ligações coesas. A coesão estrutural define-se pelo número de nós de um grupo que é necessário desligar de forma a provocar a desconexão desse grupo.
Visualização de Redes Sociais
[editar | editar código-fonte]Uma rede Social é composta por nós (atores), ligações e fluxos de informação.
A representação visual de redes sociais é de extrema importância, já que contribui para uma melhor compreensão e análise das redes sociais de forma gráfica. As redes sociais podem ser representadas por matrizes ou grafos.
As representações de rede sociais por Matrizes definem-se pela construção matemática dos dados de uma rede social. As representações de redes sociais por Grafos definem-se por representar as redes através de diagramas, que representam as relações entre os vários atores da rede. Por regra, os grafos utilizam pontos para representar os nós e linhas para representar as relações/interações entre os vários nós.
As redes sociais podem ser caracterizadas pelos tipos de grafos que delas resultam. Os tipos de grafos podem ser os seguintes:
- • Rede não-orientada: em que as ligações não assumem uma direção previamente definida;
- • Rede orientada: ao contrário da anterior, as ligações já se encontram definidas;
- • Rede ponderada: redes onde as ligações são previamente definidas com um peso, uma força e um parâmetro de orientação;
- • Rede de auto-interações: estas redes caracterizam-se pela interação entre o próprio nó;
- • Rede Multigrafo: redes que se caracterizam por apresentarem nós com várias ligações entre eles;
- • Rede de Grafo Completo: é uma rede que se caracteriza por apresentar nós que estão todos ligados uns aos outros e que não contêm nenhuma auto-interação.
Software
[editar | editar código-fonte]Existem diversos tipos de software que permitem executar a análise de redes sociais e desenho dos grafos das mesmas, esses softwares são:
- LivingNethos;
- LivingTeamwork;
- Caseboard;
- NodeXL;
- UCINET;
- PAJEK;
- Gephi;
- Network Workbench;
- SIENA;
- Sentinel Visualizer.
Ver também
[editar | editar código-fonte]- Análise de mídia social
- Sistemas de recomendação
- Recuperação de informação
- Sistemas de filtragem de informação
Referências
- ↑ Otte, Evelien; Rousseau, Ronald (2002). «Social network analysis: a powerful strategy, also for the information sciences». Journal of Information Science. 28: 441–453. doi:10.1177/016555150202800601. Consultado em 23 de março de 2015
- ↑ «Análise de redes sociais como método para a Ciência da Informação»